[1]刘秀梅,赵克勤.集对分析在不确定性智能决策中的应用[J].智能系统学报,2020,15(1):121-135.[doi:10.11992/tis.201910025]
 LIU Xiumei,ZHAO Keqin.Application of set pair analysis in the uncertainty intelligent decision making[J].CAAI Transactions on Intelligent Systems,2020,15(1):121-135.[doi:10.11992/tis.201910025]
点击复制

集对分析在不确定性智能决策中的应用(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年1期
页码:
121-135
栏目:
学术论文—人工智能基础
出版日期:
2020-01-01

文章信息/Info

Title:
Application of set pair analysis in the uncertainty intelligent decision making
作者:
刘秀梅1 赵克勤2
1. 连云港师范高等专科学校 质量监督处, 江苏 连云港 222006;
2. 诸暨市联系数学研究所, 浙江 诸暨 311800
Author(s):
LIU Xiumei1 ZHAO Keqin2
1. Quality Supervision Department, Lianyungang Normal College, Lianyungang 222006, China;
2. Institute of Zhuji Connection Mathematics, Zhuji 311800, China
关键词:
不确定性智能决策纯自然语言智能决策混合智能决策区间数决策偏联系数决策同异反集成决策决策空间集对分析
Keywords:
uncertainty intelligent decision-makingpure natural language intelligent decision-makinghybrid intelligent decision-makinginterval number decision-makingpartial connection number decision-makingidentical discrepancy contrary integration decision-maki
分类号:
TP311
DOI:
10.11992/tis.201910025
摘要:
语言是思维的表达,智能决策是基于确定性与不确定性对立统一思维的一类高级决策。文章综述集对分析在纯自然语言决策,自然语言与数学混合语言决策,区间数决策和直觉模糊决策,集对分析粗糙集决策,联系数与马尔可夫链相结合的决策,赵森烽?克勤概率的贝叶斯决策,偏联系数的决策和同异反综合集成决策等方面的应用。特点是把基于确定性的决策建模与不确定性系统分析相结合,把系统宏观层次的分析与微观层次的分析相结合,把两种或多种决策方法综合集成,根据不确定性的具体情况给出决策建议,因而是一种立足于全局的智能决策,并认为集对分析的不确定性智能决策过程,在本质上是把决策系统中的信息能转换成智能的过程。
Abstract:
Language is the expression of thought. Intelligent decision-making is a class of advanced decision-making based on unity of opposites of certainty and uncertainty. This paper summarizes the application of set pair analysis in pure natural language decision-making, mixed language decision-making of natural language and mathematics, interval number decision-making and intuitionistic fuzzy decision-making, set pair analysis rough set decision-making, decision-making combining connection number and Markov chain, Bayesian decision-making of Zhao Senfeng-Keqin probability, decision-making of partial connection number and integrated decision-making of identical, different and opposite. It is characterized by combining the decision modeling based on uncertainty with the uncertainty system analysis, combining macro-level analysis and micro-level analysis of the system, integrating two or more decision-making methods, and giving decision-making suggestions according to the specific conditions of uncertainty. Therefore, it is an intelligent decision based on the overall situation. It is believed that the uncertain intelligent decision-making process of set pair analysis is essentially a process of converting information energy in the decision-making system into intelligence.

参考文献/References:

[1] 赵克勤. 集对分析对不确定性的描述和处理[J]. 信息与控制, 1995, 24(3): 162–166
ZHAO Keqin. Disposal and description of uncertainties based on the set pair analysis[J]. Information and control, 1995, 24(3): 162–166
[2] 赵克勤, 宣爱理. 集对论——一种新的不确定性理论方法与应用[J]. 系统工程, 1996, 14(1): 18–23, 72
ZHAO Keqin, XUAN Aili. Set pair theory——A new theory method of non-define and its applications[J]. Systems engineering, 1996, 14(1): 18–23, 72
[3] 赵克勤. 集对分析及其初步应用[M]. 杭州: 浙江科学技术出版社, 2000.
[4] 赵克勤. 二元联系数A+Bi的理论基础与基本算法及在人工智能中的应用[J]. 智能系统学报, 2008, 3(6): 476–486
ZHAO Keqin. The theoretical basis and basic algorithm of binary connection A+Bi and its application in AI[J]. CAAI transactions on intelligent systems, 2008, 3(6): 476–486
[5] 王文圣, 李跃清, 金菊良, 等. 水文水资源集对分析[M]. 北京: 科学出版社, 2010.
[6] 刘秀梅, 赵克勤. 区间数决策集对分析[M]. 北京: 科学出版社, 2014.
[7] 蒋云良, 赵克勤, 刘以安, 等. 信息处理集对分析[M]. 北京: 清华大学出版社, 2015.
[8] 蒋云良, 赵克勤. 集对分析在人工智能中的应用与进展[J]. 智能系统学报, 2019, 14(1): 28–43
JIANG Yunliang, ZHAO Keqin. Application and development of set pair analysis in artificial intelligence: a survey[J]. CAAI transactions on intelligent systems, 2019, 14(1): 28–43
[9] 金菊良, 张浩宇, 宁少尉, 等. 效应全偏联系数及其在区域水资源承载力评价中的应用[J]. 华北水利水电大学学报(自然科学版), 2019, 40(1): 1–8
JIN Juliang, ZHANG Haoyu, NING Shaowei, et al. Effect full partial connection number and its application in evaluation of regional water resources carrying capacity[J]. Journal of North China university of water resources and electric power (natural science edition), 2019, 40(1): 1–8
[10] 沈定珠. 体育用联系数学[M]. 北京: 中国教育文化出版社, 2007.
[11] 汪明武, 金菊良, 周玉良. 集对分析耦合方法与应用[M]. 北京: 科学出版社, 2014.
[12] 潘争伟, 吴成国, 金菊良. 水资源系统评价与预测的集对分析方法[M]. 北京: 科学出版社, 2016.
[13] 刘保相. 粗糙集对分析理论与决策模型[M]. 北京: 科学出版社, 2010.
[14] 王万军, 晏燕. 不确定信息处理的集对分析研究与应用[M]. 兰州: 兰州大学出版社, 2015.
[15] 蒋云良, 赵克勤. 人工智能集对分析[M]. 北京: 科学出版社, 2017.
[16] 赵克勤, 米红. 非传统安全与集对分析[M]. 北京: 知识产权出版社, 2010.
[17] 蒋云良, 徐从富. 集对分析理论及其应用研究进展[J]. 计算机科学, 2006, 33(1): 205–209
JIANG Yunliang, XU Congfu. Advances in set pair analysis theory and its applications[J]. Computer science, 2006, 33(1): 205–209
[18] 赵克勤. 集对分析的不确定性系统理论在AI中的应用[J]. 智能系统学报, 2006, 1(2): 16–25
ZHAO Keqin. The application of uncertainty systems theory of set pair analysis (SPU)in the artificial intelligence[J]. CAAI transactions on intelligent systems, 2006, 1(2): 16–25
[19] 赵克勤, 赵森烽. 奇妙的联系数[M]. 北京: 知识产权出版社, 2014.
[20] 赵克勤. 成对原理及其在集对分析(SPA)中的作用与意义[J]. 大自然探索, 1998, 17(4): 90
ZHAO Keqin. The function and meaning of pair principle in the set pair analysis[J]. Exploration of nature, 1998, 17(4): 90
[21] 赵克勤. SPA的同异反系统理论在人工智能研究中的应用[J]. 智能系统学报, 2007, 2(5): 20–35
ZHAO Keqin. The application of SPA-based identical-discrepancy-contrary system theory in artificial intelligence research[J]. CAAI transactions on intelligent systems, 2007, 2(5): 20–35
[22] PAN Zhengwei, WANG Yanhua, JIN Juliang, et al. Set pair analysis method for coordination evaluation in water resources utilizing conflict[J]. Physics and chemistry of the earth, parts A/B/C, 2017, 101: 149–156.
[23] YU Furong, QU Jihong, LI Zhiping, et al. Application of set pair analysis based on the improved five-element connectivity in the evaluation of groundwater quality in Xuchang, Henan Province, China[J]. Water science & technology: water supply, 2017(3): 632–642.
[24] YAN Fang, XU Kaili. Application of a cloud model-set pair analysis in hazard assessment for biomass gasification stations[J]. PLoS one, 2017, 12(1): e0170012.
[25] YAN Fang, XU Kaili, LI Deshun, et al. Hazard Assessment for biomass gasification station using general set pair analysis[J]. Bioresources, 2016, 11(4): 8307–8324.
[26] TAN Chong, SONG Yi, CHE H. Application of set pair analysis method on occupational hazard of coal mining[J]. Safety science, 2017, 92: 10–16.
[27] LI Chunhui, SUN Lian, JIA Junxiang, et al. Risk assessment of water pollution sources based on an integrated k-means clustering and set pair analysis method in the region of Shiyan, China[J]. Science of the total environment, 2016, 557-558: 307–316.
[28] WANG Ya, ZHOU Lihua. Assessment of the coordination ability of sustainable social-ecological systems development based on a set pair analysis: a case study in Yanchi County, China[J]. Sustainability, 2016, 8(8): 733.
[29] WANG Mingwu, XU Xinyu, LI Jian, et al. A novel model of set pair analysis coupled with extenics for evaluation of surrounding rock stability[J]. Mathematical problems in engineering, 2015, 2015: 892549
[30] ZHANG Jian, YANG Xiaohua, LI Yuqi. A refined rank set pair analysis model based on wavelet analysis for predicting temperature series[J]. International journal of numerical methods for heat & fluid flow, 2015, 25(5): 974–985.
[31] YANG Xiaohua, SUN Boyang, ZHANG Jian, et al. Hierarchy evaluation of water resources vulnerability under climate change in Beijing, China[J]. Natural hazards, 2016, 84(S1): 63–76.
[32] Science. Deemed university details findings in science (an advanced study on operations of connection number based on set pair analysis)[J]. Science letter, 2019.
[33] WEI Chao, DAI Xiaoyan, YE Shufeng, et al. Prediction analysis model of integrated carrying capacity using set pair analysis[J]. Ocean & coastal management, 2016, 120: 39–48.
[34] BAO Danwen, ZHANG Xiaoling. Measurement methods and influencing mechanisms for the resilience of large airports under emergency events[J]. Transportmetrica a: transport science, 2018, 14(10): 855–880.
[35] GARG H, KUMAR K. An advanced study on the similarity measures of intuitionistic fuzzy sets based on the set pair analysis theory and their application in decision making[J]. Soft computing, 2018, 22(15): 4959–4970.
[36] YAN Fang, XU Kaili. A set pair analysis based layer of protection analysis and its application in quantitative risk assessment[J]. Journal of loss prevention in the process industries, 2018, 55: 313–319.
[37] LI Peiyue, QIAN Hui, WU Jianhua. Application of set pair analysis method based on entropy weight in groundwater quality assessment -a case study in Dongsheng city, northwest China[J]. Journal of chemistry, 2011, 8: 879683.
[38] ZENG Jiajun, HUANG Guoru. Set pair analysis for karst waterlogging risk assessment based on AHP and entropy weight[J]. Hydrology research, 2018, 49(4): 1143–1155.
[39] KUMAR K, GARG H. Connection number of set pair analysis based TOPSIS method on intuitionistic fuzzy sets and their application to decision making[J]. Applied intelligence, 2018, 48(8): 2112–2119.
[40] GARG H, KUMAR K. Some aggregation operators for linguistic intuitionistic fuzzy set and its application to group decision-making process using the set pair analysis[J]. Arabian journal for science and engineering, 2018, 43(6): 3213–3227.
[41] FENG Yixiong, LU Runjie, GAO Yicong, et al. Multi-objective optimization of VBHF in sheet metal deep-drawing using Kriging, MOABC, and set pair analysis[J]. The international journal of advanced manufacturing technology, 2018, 96(9-12): 3127–3138.
[42] 赵克勤. 偏联系数[C]//中国人工智能进展2005论文集. 北京: 北京邮电大学出版社, 2005: 884-885.
ZHAO Keqin. Partial connection number[C]//Proceedings of Chinese artificial intelligence 2005. Beijing: Beijing university of posts and telecommunications publishing house, 2005: 884-885.
[43] 施志坚, 王华伟, 王祥. 基于多元联系数集对分析的航空维修风险态势评估[J]. 系统工程与电子技术, 2016, 38(3): 588–594
SHI Zhijian, WANG Huawei, WANG Xiang. Risk state evaluation of aviation maintenance based on multiple connection number set pair analysis[J]. Systems engineering and electronics, 2016, 38(3): 588–594
[44] 李聪, 陈建宏, 杨珊, 等. 五元联系数在地铁施工风险综合评价中的应用[J]. 中国安全科学学报, 2013, 23(10): 21–26
LI Cong, CHEN Jianhong, YANG Shan, et al. Application of five-element connection number to comprehensive evaluation of risks involved with subway construction[J]. China safety science journal, 2013, 23(10): 21–26
[45] 谢红涛, 李波, 赵云胜. 基于联系数的地铁隧道施工邻近建筑物风险评价[J]. 工业安全与环保, 2014, 44(7): 16–19
XIE Hongtao, LI Bo, ZHAO Yunsheng. Risk assessment of neighboring building in metro tunneling construction based on connection number[J]. Industrial safety and environmental protection, 2014, 44(7): 16–19
[46] XIE Xuecai, GUO Deyong. Human factors risk assessment and management: process safety in engineering[J]. Process safety and environmental protection, 2018, 113: 467–482.
[47] 马成正, 王洪德. 联系数在地铁车站火灾安全风险评价中的应用[J]. 辽宁工程技术大学学报(自然科学版), 2015, 37(1): 26–31
MA Chengzheng, WANG Hongde. Application of connection number to safety risk evaluation of fire accident in subway station[J]. Journal of liaoning technical university (natural science edition), 2015, 37(1): 26–31
[48] 赵金楼, 高宏玉, 成俊会. 基于三元联系数的网络舆情传播中主体参与意愿演化评价方法[J]. 情报科学, 2017, 35(8): 118–120, 140
ZHAO Jinlou, GAO Hongyu, CHENG Junhui. Research on evolution of participation willingness in network public opinion: based on three-element connection number[J]. Information science, 2017, 35(8): 118–120, 140
[49] 赵克勤. 反偏联系数[C]//中国人工智能学会第12届全国学术年会论文汇编. 哈尔滨: 中国人工智能学会, 2007: 66-67.
ZHAO Keqin, Inverse correlation number[C]//Advances in Artificial Intelligence in China. Harbin: Chinese association for artificial intelligence, 2007: 66-67.
[50] 刘秀梅, 赵克勤. 基于联系数复运算的区间数多属性决策方法及应用[J]. 数学的实践与认识, 2008, 38(23): 57–64
LIU Xiumei, ZHAO Keqin. Multiple attribute decision making and its applications based on complex number arithmetic operation of connection number with interval numbers[J]. Mathematics in practice and theory, 2008, 38(23): 57–64
[51] 张肃. 基于集对分析和直觉模糊集的语言型多属性群决策方法[J]. 科技导报, 2008, 26(12): 67–69
ZHANG Su. Method for multiple attribute decision making with linguistic assessment information based on set pair analysis and intuitionistic fuzzy set[J]. Science & technology review, 2008, 26(12): 67–69
[52] 金卫雄, 刘秀梅, 赵克勤. 基于联系数的定性定量混合多属性区间数决策[J]. 数学的实践与认识, 2014, 44(16): 166–173
JIN Weixiong, LIU Xiumei, ZHAO Keqin. Multiple attribute decision-making with the interval number and with the hybrid qualitative and quantitative based on the connection number[J]. Mathematics in practice and theory, 2014, 44(16): 166–173
[53] 刘秀梅, 赵克勤. 区间数伴语言变量的混合多属性决策[J]. 模糊系统与数学, 2014, 28(1): 113–118
LIU Xiumei, ZHAO Keqin. On studying hybrid multi-attribute decision-making with interval number and linguistic value[J]. Fuzzy systems and mathematics, 2014, 28(1): 113–118
[54] 刘秀梅, 赵克勤. 基于联系数不确定性分析的区间数多属性决策[J]. 模糊系统与数学, 2010, 24(5): 141–148
LIU Xiumei, ZHAO Keqin. Multiple attributes decision-making of intervals based on analysis of the uncertainty of connection number[J]. Fuzzy systems and mathematics, 2010, 24(5): 141–148
[55] 刘秀梅, 赵克勤. 基于区间数确定性与不确定性相互作用点的多属性决策[J]. 数学的实践与认识, 2009, 39(8): 68–75
LIU Xiumei, ZHAO Keqin. Multiple attribute decision making based on the interval numbers certainty and the uncertainty interact on each other[J]. Mathematics in practice and theory, 2009, 39(8): 68–75
[56] 刘秀梅, 赵克勤. 基于二次联系数的区间数多属性决策方法及应用[J]. 模糊系统与数学, 2011, 25(5): 115–121
LIU Xiumei, ZHAO Keqin. Quadratic-connection-number-based method and its applications for multiple attributes decision-making with interval numbers[J]. Fuzzy systems and mathematics, 2011, 25(5): 115–121
[57] 刘秀梅, 赵克勤. 基于联系数的不确定空情意图识别[J]. 智能系统学报, 2012, 7(5): 450–456
LIU Xiumei, ZHAO Keqin. Inference method on intention with uncertain aerial information based on the connection number[J]. CAAI transactions on intelligent systems, 2012, 7(5): 450–456
[58] 吴维煊, 刘秀梅, 赵克勤. 区间数特性集对分析及在多指标决策中的应用[J]. 数学的实践与认识, 2012, 42(24): 66–71
WU Weixuan, LIU Xiumei, ZHAO Keqin. The application of interval number character set in analysis and multiple attribute decision making[J]. Mathematics in practice and theory, 2012, 42(24): 66–71
[59] 吴维煊. 基于区间数正态分布假设的多属性决策集对分析[J]. 数学的实践与认识, 2013, 43(3): 260–264
WU Weixuan. Multi-attribute decision-making and set pair analysis based on normal distribution hypothesis interval number[J]. Mathematics in practice and theory, 2013, 43(3): 260–264
[60] 刘秀梅, 赵克勤. 基于联系数的属性权重未知的区间数多属性决策研究[J]. 数学的实践与认识, 2013, 49(3): 143–148
LIU Xiumei, ZHAO Keqin. Interval multi-attribute decision making with the attribute weight unknown based on connection number[J]. Mathematics in practice and theory, 2013, 49(3): 143–148
[61] 刘秀梅, 赵克勤. 基于SPA的D-U空间的区间数多属性决策模型及应用[J]. 模糊系统与数学, 2009, 23(2): 167–174
LIU Xiumei, ZHAO Keqin. Multiple attribute decision making and its applications with interval numbers based on D-U space of SPA[J]. Fuzzy systems and mathematics, 2009, 23(2): 167–174
[62] 吴维煊. 联系数在梯形模糊数多属性决策中的应用[J]. 数学的实践与认识, 2013, 43(1): 160–166
WU Weixuan. The utilization of interval number in multi-attribute decision-making of trapezoidal fuzzy number[J]. Mathematics in practice and theory, 2013, 43(1): 160–166
[63] 徐泽水. 直觉模糊偏好信息下的多属性决策途径[J]. 系统工程理论与实践, 2007, 27(11): 62–71
XU Zeshui. Approaches to multiple attribute decision making with intuitionistic fuzzy preference information[J]. Systems engineering-theory & practice, 2007, 27(11): 62–71
[64] 施丽娟, 黄天民, 翟秀枝. 基于集对分析的区间直觉模糊多属性决策方法[J]. 西南民族大学学报(自然科学版), 2009, 35(3): 468–471
SHI Lijuan, HUANG Tianmin, ZHAI Xiuzhi. Approach to interval-valued intuitionistic fuzzy set multiple attribute decision making based on set pair analysis[J]. Journal of southwest university for nationalities (natural science edition), 2009, 35(3): 468–471
[65] 叶跃祥, 糜仲春, 王宏宇, 等. 一种基于集对分析的区间数多属性决策方法[J]. 系统工程与电子技术, 2006, 28(9): 1344–1347
YE Yuexiang, MI Zhongchun, WANG Hongyu, et al. Set-pair-analysis-based method for multiple attributes decision-making with intervals[J]. Systems engineering and electronics, 2006, 28(9): 1344–1347
[66] 刘秀梅, 赵克勤. 属性等级和属性值均为区间数的多属性决策集对分析[J]. 模糊系统与数学, 2012, 26(6): 124–131
LIU Xiumei, ZHAO Keqin. Set-pair-analysis-based method for uncertain multi-attributes decision-making with intervals of the attribute grades and the attribute values[J]. Fuzzy systems and mathematics, 2012, 26(6): 124–131
[67] 张传芳, 杨春玲. 区间型联系数及其在多属性决策中的应用[J]. 数学的实践与认识, 2012, 42(13): 61–67
ZHANG Chuanfang, YANG Chunling. Interval connection number and application on multiple attribute decision-making model[J]. Mathematics in practice and theory, 2012, 42(13): 61–67
[68] 赵森烽, 赵克勤. 概率联系数化的原理及其在概率推理中的应用[J]. 智能系统学报, 2012, 7(3): 200–205
ZHAO Senfeng, ZHAO Keqin. The principle of a connection number in probability and its application in probabilistic reasoning[J]. CAAI transactions on intelligent systems, 2012, 7(3): 200–205
[69] 赵森烽, 赵克勤. 联系概率的由来及其在风险决策中的应用[J]. 数学的实践与认识, 2013, 43(4): 165–171
ZHAO Senfeng, ZHAO Keqin. The contact probability in risk decision-making medium application[J]. Mathematics in practice and theory, 2013, 43(4): 165–171
[70] 赵克勤, 赵森烽. 贝叶斯概率向赵森烽-克勤概率的转换与应用[J]. 智能系统学报, 2015, 10(1): 51–61
ZHAO Keqin, ZHAO Senfeng. Bayes probability transition to Zhao Senfeng-Keqin probability and its application[J]. CAAI transactions on intelligent systems, 2015, 10(1): 51–61
[71] 张萌萌, 刘以安, 宋萍. 偏联系聚类和RF算法在雷达信号分选中的应用[J]. 激光与光电子学进展, 2019, 56(06): 236–243
Zhang Mengmeng, Liu Yian, Song Ping. Application of partial connection clustering and random forest in radar signal sorting[J]. Laser & Optoelectronics progress, 2019, 56(06): 236–243
[72] 王万军. 一种基于集对决策的偏联系数方法[J]. 甘肃联合大学学报(自然科学版), 2009, 23(3): 43–45
WANG Wanjun. A decision method in parital connection number based on SPA[J]. Journal of Gansu Lianhe university (natural sciences edition), 2009, 23(3): 43–45
[73] 赵克勤. 集对分析与同异反决策[J]. 决策探索, 1992(2): 14–15
ZHAO Keqin. Set pair analysis and identical-discrepancy-contrary decision[J]. Policy research & exploration, 1992(2): 14–15
[74] 杨红梅. 基于二元联系数的三角模糊数直觉模糊集多属性决策[J]. 山西师范大学学报(自然科学版), 2015, 29(2): 13–19
YANG Hongmei. Multiple attribute decision making of triangular fuzzy number intuition fuzzy set based on two-element connection number[J]. Journal of Shanxi normal university (natural science edition), 2015, 29(2): 13–19
[75] 杨亚锋, 张春英, 李丽红. 粗糙集对分析方法及其在属性约简中的应用[J]. 模糊系统与数学, 2013, 27(6): 176–181
YANG Yafeng, ZHANG Chunying, LI Lihong. Rough set pair method and its application in the attribute reduction[J]. Fuzzy systems and mathematics, 2013, 27(6): 176–181
[76] 常志朋, 刘小弟, 张世涛. 基于高阶Markov链的重大决策社会风险变权集对预测模型[J]. 决策与控制, 2018, 33(12): 2243–2250
CHANG Zhipeng, LIU Xiaodi, ZHANG Shitao. Set pair prediction model for social risk from major decision-making based on variable weight and higher-order Markov chain[J]. Control and decision, 2018, 33(12): 2243–2250
[77] 汪新凡, 王坚强, 杨恶恶. 基于二元联系数集结算子的多准则群决策方法[J]. 控制与决策, 2013, 28(11): 1630–1636
WANG Xinfan, WANG Jianqiang, YANG Wue. Multiple criteria group decision making method based on binary connection number aggregation operators[J]. Control and decision, 2013, 28(11): 1630–1636
[78] 汪新凡. 基于三元联系数的不确定多属性决策方法[J]. 系统工程与电子技术, 2007, 29(12): 2068–2071
WANG Xinfan. Uncertain multiple attribute decision making methods based on three-unit connection number[J]. Systems engineering and electronics, 2007, 29(12): 2068–2071
[79] 王万军. 一种基于三元联系数的语言区间信息集结方法[J]. 计算机工程与应用, 2014, 51(17): 219–222
WANG Wanjun. Linguistic interval information aggregation method based on three element connection numbers[J]. Computer engineering and applications, 2014, 51(17): 219–222
[80] 许逊哲, 茹意, 蒯仂, 等. 四元联系数在土槐菝葜汤治疗血热型银屑病疗效研究中的应用[J]. 中国中西医结合皮肤性病学杂志, 2018, 17(6): 489–492
XU Xunzhe, RU Yi, KUAI Le, et al. Four-element connection number in the study of tuhuai-smilax decoction in treating psoriasis vulgaris[J]. Chinese journal of dermatovenerology of integrated traditional and western medicine, 2018, 17(6): 489–492
[81] 王冰洁. 四元联系数在2型糖尿病住院患者抑郁发生影响因子分析中的应用[J]. 数学的实践与认识, 2011, 41(17): 101–105
WANG Bingjie. The application of four unit relation number in the analysis of influencing factors of depression on type 2 diabetes patients in hospital[J]. Mathematics in practice and theory, 2011, 41(17): 101–105
[82] 王霞. 联系范数为4与6的四元联系数系统态势数值排序及应用[J]. 数学的实践与认识, 2004, 34(7): 107–112
WANG Xia. The perrmutation and use of four unit relation number systems situation numer ical value of relation model number 4 and 6[J]. Mathematics in practice and theory, 2004, 34(7): 107–112
[83] 刘双跃, 王娟, 何发龙. 四元联系数对煤矿安全质量标准化的优化研究[J]. 中国安全生产科学技术, 2012, 8(12): 32–37
LIU Shuangyue, WANG Juan, HE Falong. Optimization research of coal mine safety quality standardization based on four-element connection number model[J]. Journal of safety science and technology, 2012, 8(12): 32–37
[84] 张林凤. 基于五元联系数的浙江省国民体质态势分析[J]. 浙江师范大学学报(自然科学版), 2003, 26(4): 402–405
ZHANG Linfeng. A situation-oriented order analysis of people’s constitution in Zhejiang on five-element connection number[J]. Journal of Zhejiang normal university (natural sciences edition), 2003, 26(4): 402–405
[85] 周兴慧, 张吉军. 基于五元联系数的风险综合评价方法及其应用[J]. 系统工程理论与实践, 2013, 33(8): 2169–2176
ZHOU Xinghui, ZHANG Jijun. Risk comprehensive evaluation method and its application based on the five-element connection number[J]. Systems engineering —theory & practice, 2013, 33(8): 2169–2176
[86] 祁云清, 姚安林, 黄亮亮, 等. 五元联系数在LNG接收站失效可能性评价中的应用[J]. 中国安全科学学报, 2014, 24(12): 130–136
QI Yunqing, YAO Anlin, HUANG Liangliang, et al. Application of five-element connection number to failure possibility assessment of LNG terminal[J]. China safety science journal, 2014, 24(12): 130–136
[87] 冯东梅, 徐雨函, 贾崇. 基于五元联系数的PPP项目风险评价研究[J]. 工程管理学报, 2017, 31(6): 77–82
FENG Dongmei, XU Yuhan, JIA Chong. A risk assessment of PPP projects based on five-element connection number[J]. Journal of engineering management, 2017, 31(6): 77–82
[88] 袁乐平, 蔡月茹, 崔振新. 基于五元联系数法的进近管制员压力评价模型[J]. 安全与环境学报, 2017, 17(2): 573–577
YUAN Leping, CAI Yueru, CUI Zhenxin. An appreciation model for the controller’s pressure based on the five-element connection number[J]. Journal of safety and environment, 2017, 17(2): 573–577
[89] 刘晗, 赵修茗, 赵鑫, 等. 基于五元联系数的古建筑火灾风险评价[J]. 西安科技大学学报, 2018, 38(6): 901–909
LIU Han, ZHAO Xiuming, ZHAO Xin, et al. Fire risk assessment of the ancient buildings based on five-element connection number[J]. Journal of Xi’an university of science and technology, 2018, 38(6): 901–909
[90] 王红瑞, 巩书鑫, 邓彩云, 等. 基于五元联系数的水资源承载力评价[J]. 西北大学学报(自然科学版), 2019, 49(2): 211–218
WANG Hongrui, GONG Shuxin, DENG Caiyun, et al. Research on water resources carrying capacity based on five-element connection number[J]. Journal of northwest university (natural science edition), 2019, 49(2): 211–218
[91] 陈光怡, 吕大为. 基于五元联系数的集对分析模型在围岩稳定性评价中的应用[J]. 湖南工程学院学报, 2019, 29(2): 79–82, 94
CHEN Guangyi, LYU Dawei. Application of set pair analysis model based on five-element connection number in surrounding rock stability evaluation[J]. Journal of Hunan institute of engineering, 2019, 29(2): 79–82, 94
[92] 冯莉莉, 高军省. 基于六元联系数的水质综合评价模型[J]. 灌溉排水学报, 2011, 30(1): 121–124
FENG Lili, GAO Junsheng. Water quality assessment model based on six-element connection number[J]. Journal of irrigation and drainage, 2011, 30(1): 121–124
[93] 高苏蒂, 潘争伟, 刘巧红. 淮河干流水质评价的集对分析模型[J]. 安徽农业科学, 2012, 40(2): 962–963, 989
GAO Sudi, PAN Zhengwei, LIU Qiaohong. Set pair analysis model for evaluating water quality of huaihe river mainstream[J]. Journal of Anhui agricultural sciences, 2012, 40(2): 962–963, 989
[94] 盛祥, 王恩. 单一供水模式下城市供水风险评价[J]. 淮阴工学院学报, 2015, 24(3): 83–88
SHENG Xiang, WANG En. Urban water supply risk assessment under single supply mode[J]. Journal of Huaiyin institute of technology, 2015, 24(3): 83–88
[95] 张清河. 多元联系数在地基处理方案模糊选优中的应用[J]. 水文地质工程地质, 2005, 32(6): 112–115
ZHANG Qinghe. Application of multivariate connection number in the fuzzy optimizing of foundation treatment plan[J]. Hydrogeology and engineering geology, 2005, 32(6): 112–115
[96] 胡启洲, 吴娟. 基于多维联系数的城市交通安全态势监控模型[J]. 中国安全科学学报, 2011, 21(10): 16–22
HU Qizhou, WU Juan. A monitoring and controlling model for urban traffic safety state based on multi-dimension connection number[J]. China safety science journal, 2011, 21(10): 16–22
[97] 李军, 李海玉, 陈波, 等. 基于多维联系数的城轨交通车站安全态势理解模型研究[J]. 铁道标准设计, 2014, 58(9): 129–134
LI Jun, LI Haiyu, CHEN Bo, et al. Security situation comprehension model of urban rail transit station based on multi-dimension connection number[J]. Railway standard design, 2014, 58(9): 129–134
[98] 胡启洲, 孙煦. 基于多维联系数的城市路网交通拥堵态势监控模型[J]. 中国公路学报, 2013, 26(6): 143–149
HU Qizhou, SUN Xu. Model for traffic congestion state monitor in urban road network based on multi-dimension connection number[J]. China journal of highway and transport, 2013, 26(6): 143–149
[99] 胡军华, 杨柳, 刘咏梅. 基于累积前景理论的动态随机多准则决策方法[J]. 软科学, 2012, 26(2): 132–135
HU Junhua, YANG Liu, LIU Yongmei. Dynamic stochastic multi-criteria decision making method based on cumulative prospect theory[J]. Soft science, 2012, 26(2): 132–135
[100] 樊治平, 尤天慧, 张尧. 属性权重信息不完全的区间数多属性决策方法[J]. 东北大学学报(自然科学版), 2005, 26(8): 798–800
FAN Zhiping, YOU Tianhui ZHANG Yao. Method for Interval multiple attribute decision-making problem with incomplete attribute weights[J]. Journal of northeastern university (natural science edition), 2005, 26(8): 798–800
[101] 杨红梅, 赵克勤. 偏联系数的计算与应用研究[J]. 智能系统学报, 2019, 14(5): 865–876
YANG Hongmei, ZHAO Keqin. The calculation and application of partial connection numbers[J]. CAAI transactions on intelligent systems, 2019, 14(5): 865–876

备注/Memo

备注/Memo:
收稿日期:2019-10-22。
基金项目:江苏省“六大人才高峰”人才培养项目(JY2011003)
作者简介:刘秀梅,教授,中国系统工程学会决策科学专业委员会第六、七、八届委员。主要研究方向为数学教育、联系数学。发表学术论文50余篇,出版专著1部;赵克勤,诸暨市联系数学研究所研究员,中国人工智能学会第3、4、5届理事和人工智能基础专业委员会副主任。主要研究方向为集对分析、联系数学、联系科学,发表学术论文100余篇,出版专著5部
通讯作者:赵克勤.E-mail:spacnm@163.com
更新日期/Last Update: 1900-01-01