[1]曾婷,唐孝,谭阳,等.相似度三支决策模糊粗糙集模型的决策代价研究[J].智能系统学报,2020,15(6):1068-1078.[doi:10.11992/tis.201909015]
 ZENG Ting,TANG Xiao,TAN Yang,et al.Decision costs of the similarity three-way decision-theoretic fuzzy rough set model[J].CAAI Transactions on Intelligent Systems,2020,15(6):1068-1078.[doi:10.11992/tis.201909015]
点击复制

相似度三支决策模糊粗糙集模型的决策代价研究(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年6期
页码:
1068-1078
栏目:
学术论文—知识工程
出版日期:
2020-11-05

文章信息/Info

Title:
Decision costs of the similarity three-way decision-theoretic fuzzy rough set model
作者:
曾婷12 唐孝12 谭阳12 丁本香12
1. 四川师范大学 数学科学学院, 四川 成都 610066;
2. 四川师范大学 智能信息与量子信息研究所, 四川 成都 610066
Author(s):
ZENG Ting12 TANG Xiao12 TAN Yang12 DING Benxiang12
1. School of Mathematical Science, Sichuan Normal University, Chengdu 610066, China;
2. Institute of Intelligent Information and Quantum Information, Sichuan Normal University, Chengdu 610066, China
关键词:
三支决策模糊粗糙集决策代价模糊数阈值对属性值区间值多重集
Keywords:
three-way decisionsfuzzy rough setdecision costsfuzzy numberthreshold pairattribute valueinterval valuemultiset
分类号:
TP18;O23
DOI:
10.11992/tis.201909015
摘要:
在三支决策模糊粗糙集模型中,一些学者基于相似度三支决策模糊粗糙集模型建立了目标函数来得到最优阈值对 $\left( {\alpha ,\;\beta } \right)$ 的计算方法,但在该过程的研究中,学者并没有在相似度三支决策模糊粗糙集模型中讨论关于决策代价的描述问题。基于模糊信息系统用新的函数来描述决策代价成为计算阈值对 $\left( {\alpha ,\;\beta } \right)$ 的一种方法,首先,在模糊信息系统中,通过建立一个描述决策代价的函数,将模糊信息系统中的模糊数与三支决策的决策代价联系在一起;然后对隶属频率进行拟合,得到了三支决策中决策代价的数值描述;最后,通过两个实例说明了该方法的可行性和适用性。
Abstract:
In the three-way decision-theoretic fuzzy rough set model, several scholars established the objective function based on the similarity three-way decision-theoretic fuzzy rough set model to derive the method for calculating the optimal threshold pair (α, β). However, during this research, the authors did not discuss the description of the decision costs in the similarity three-way decision-theoretic fuzzy rough set model. The new function describing the decision costs is used in the method for calculating the threshold pair (α, β) based on the fuzzy information system. First, in the fuzzy information system, the fuzzy number is associated with the decision costs of three-way decisions by establishing a function describing the decision costs. Then, the numerical description of the decision costs of three-way decisions is obtained by fitting the membership frequency. Finally, two examples are given to illustrate the feasibility and applicability of the method.

参考文献/References:

[1] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets[J]. International journal of general systems, 1990, 17(2/3): 191-209.
[2] DUBOIS D, PRADE H. Putting rough sets and fuzzy sets together[M]//S?OWI?SKI R. Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory. Dordrecht: Springer, 1992: 203-222.
[3] SUN Bingzhen, MA Weimin, ZHAO Haiyan. Decision-theoretic rough fuzzy set model and application[J]. Information sciences, 2014, 283: 180-196.
[4] YAO Y Y, WONG S K M. A decision theoretic framework for approximating concepts[J]. International journal of man-machine studies, 1992, 37(6): 793-809.
[5] ZHAO Xuerong, HU Baoqing. Fuzzy and interval-valued fuzzy decision-theoretic rough set approaches based on fuzzy probability measure[J]. Information sciences, 2015, 298: 534-554.
[6] YAO Yiyu. An outline of a theory of three-way decision[C]//Proceedings of the International Conference on Rough Sets and Current Trends in Computing. Berlin, Heidelberg, Germany, 2012: 1-17.
[7] LIANG Decui, LIU Dun. Systematic studies on three-way decisions with interval-valued decision-theoretic rough sets[J]. Information sciences, 2014, 276: 186-203.
[8] LIANG Decui, XU Zeshui, LIU Dun. Three-way decisions based on decision-theoretic rough sets with dual hesitant fuzzy information[J]. Information sciences, 2017, 396: 127-143.
[9] LIANG Decui, XU Zeshui, LIU Dun. Three-way decisions with intuitionistic fuzzy decision-theoretic rough sets based on point operators[J]. Information sciences, 2017, 375: 183-201.
[10] FENG Tao, MI Jusheng. Variable precision multigranulation decision-theoretic fuzzy rough sets[J]. Knowledge-based systems, 2016, 91: 93-101.
[11] DENG Xiaofei, YAO Yiyu. Decision-theoretic three-way approximations of fuzzy sets[J]. Information sciences, 2014, 279: 702-715.
[12] 杨霁琳, 张贤勇, 唐孝, 等. 基于最优相似度三支决策的模糊粗糙集模型[J]. 计算机科学, 2018, 45(10): 27-32
YANG Jilin, ZHANG Xianyong, TANG Xiao, et al. Fuzzy rough set model based on three-way decisions of optimal similar degrees[J]. Computer science, 2018, 45(10): 27-32
[13] 衷锦仪, 叶东毅. 基于模糊数风险最小化的拓展决策粗糙集模型[J]. 计算机科学, 2014, 41(3): 50-54
ZHONG Jinyi, YE Dongyi. Extended decision-theoretic rough set models based on fuzzy minimum cost[J]. Computer science, 2014, 41(3): 50-54
[14] ZHAO Xuerong, HU Baoqing. Three-way decisions with decision-theoretic rough sets in multiset-valued information tables[J]. Information sciences, 2020, 507: 684-699.
[15] LIANG Decui, LIU Dun, PEDRYCZ W, et al. Triangular fuzzy decision-theoretic rough sets[J]. International journal of approximate reasoning, 2013, 54(8): 1087-1106.
[16] LIU Xinwang. Measuring the satisfaction of constraints in fuzzy linear programming[J]. Fuzzy sets and systems, 2001, 122(2): 263-275.
[17] YAO Yiyu, ZHAO Yan. Attribute reduction in decision-theoretic rough set models[J]. Information sciences, 2008, 178(17): 3356-3373.
[18] LI Wentao, XU Weihua. Double-quantitative decision-theoretic rough set[J]. Information sciences, 2015, 316: 54-67.
[19] QIAN Yuhua, ZHANG Hu, SANG Yanli, et al. Multigranulation decision-theoretic rough sets[J]. International journal of approximate reasoning, 2014, 55(1): 225-237.
[20] ZHANG Hongying, YANG Shuyun, MA Jianmin. Ranking interval sets based on inclusion measures and applications to three-way decisions[J]. Knowledge-based systems, 2016, 91: 62-70.
[21] LI Weiwei, HUANG Zhiqiu, JIA Xiuyi, et al. Neighborhood based decision-theoretic rough set models[J]. International journal of approximate reasoning, 2016, 69: 1-17.
[22] 邢航. 基于构造性覆盖算法的三支决策模型[D]. 合肥: 安徽大学, 2014.
XING Hang. Three-way decisions model based on constructive covering algorithm[D]. Hefei: Anhui University, 2014.
[23] 徐健锋, 何宇凡, 刘斓. 三支决策代价目标函数的关系及推理研究[J]. 计算机科学, 2018, 45(6): 176-182
XU Jianfeng, HE Yufan, LIU Lan. Relationship and reasoning study for three-way decision cost objective functions[J]. Computer science, 2018, 45(6): 176-182
[24] LIU Jiubing, LI Huaxiong, ZHOU Xianzhong, et al. An optimization-based formulation for three-way decisions[J]. Information sciences, 2019, 495: 185-214.

相似文献/References:

[1]张楠,姜丽丽,岳晓冬,等.效用三支决策模型[J].智能系统学报,2016,11(4):459.[doi:10.11992/tis.201606010]
 ZHANG Nan,JIANG Lili,YUE Xiaodong,et al.Utility-based three-way decisions model[J].CAAI Transactions on Intelligent Systems,2016,11(6):459.[doi:10.11992/tis.201606010]
[2]苗夺谦,张清华,钱宇华,等.从人类智能到机器实现模型——粒计算理论与方法[J].智能系统学报,2016,11(6):743.[doi:10.11992/tis.201612014]
 MIAO Duoqian,ZHANG Qinghua,QIAN Yuhua,et al.From human intelligence to machine implementation model: theories and applications based on granular computing[J].CAAI Transactions on Intelligent Systems,2016,11(6):743.[doi:10.11992/tis.201612014]
[3]徐健锋,何宇凡,汤涛,等.概率粗糙集三支决策在线快速计算算法研究[J].智能系统学报,2018,13(05):741.[doi:10.11992/tis.201706047]
 XU Jianfeng,HE Yufan,TANG Tao,et al.Research on a fast online computing algorithm based on three-way decisions with probabilistic rough sets[J].CAAI Transactions on Intelligent Systems,2018,13(6):741.[doi:10.11992/tis.201706047]
[4]刘盾,李天瑞,梁德翠,等.三支决策的时空性[J].智能系统学报,2019,14(1):141.[doi:10.11992/tis.201804045]
 LIU Dun,LI Tianrui,LIANG Decui,et al.Temporality and spatiality of three-way decisions[J].CAAI Transactions on Intelligent Systems,2019,14(6):141.[doi:10.11992/tis.201804045]
[5]刘盾,李天瑞,杨新,等.三支决策-基于粗糙集与粒计算研究视角[J].智能系统学报,2019,14(6):1111.[doi:10.11992/tis.201905039]
 LIU Dun,LI Tianrui,YANG Xin,et al.Three-way decisions: research perspectives for rough sets and granular computing[J].CAAI Transactions on Intelligent Systems,2019,14(6):1111.[doi:10.11992/tis.201905039]
[6]刘牧雷,徐菲菲.基于三支决策的序列数据代价敏感分类算法[J].智能系统学报,2019,14(6):1255.[doi:10.11992/tis.201905049]
 LIU Mulei,XU Feifei.A sequence data, cost-sensitive classification algorithm based on three-way decisions[J].CAAI Transactions on Intelligent Systems,2019,14(6):1255.[doi:10.11992/tis.201905049]
[7]高琪,李德玉,王素格.基于模糊不一致对的多标记属性约简[J].智能系统学报,2020,15(2):374.[doi:10.11992/tis.201905046]
 GAO Qi,LI Deyu,WANG Suge.Multi-label attribute reduction based on fuzzy inconsistency pairs[J].CAAI Transactions on Intelligent Systems,2020,15(6):374.[doi:10.11992/tis.201905046]
[8]程麟焰,胡峰.基于模糊超网络的知识获取方法研究[J].智能系统学报,2019,14(3):479.[doi:10.11992/tis.201804055]
 CHENG Linyan,HU Feng.Fuzzy hypernetwork-based knowledge acquisition method[J].CAAI Transactions on Intelligent Systems,2019,14(6):479.[doi:10.11992/tis.201804055]
[9]赵天娜,苗夺谦,米据生,等.面向混合数据的多伴随三支决策[J].智能系统学报,2019,14(6):1092.[doi:10.11992/tis.201905048]
 ZHAO Tianna,MIAO Duoqian,MI Jusheng,et al.Multi-adjoint three-way decisions on heterogeneous data[J].CAAI Transactions on Intelligent Systems,2019,14(6):1092.[doi:10.11992/tis.201905048]

备注/Memo

备注/Memo:
收稿日期:2019-09-06。
基金项目:四川省科技计划资助项目(2019YJ0529);四川省教育厅重点项目(18ZA0410)
作者简介:曾婷,硕士研究生,主要研究方向为数据挖掘;唐孝,副教授,博士,硕士生导师,主要研究方向为基于不确定性理论的信息处理及应用。发表学术论文20余篇;谭阳,硕士研究生,主要研究方向为数据挖掘
通讯作者:唐孝.E-mail:18242087@qq.com
更新日期/Last Update: 2020-12-25