[1]郭晓峰,王耀南,毛建旭.基于几何特征的IC芯片字符分割与识别方法[J].智能系统学报,2020,15(1):144-151.[doi:10.11992/tis.201904028]
 GUO Xiaofeng,WANG Yaonan,MAO Jianxu.IC chip character segmentation and recognition method based on geometric features[J].CAAI Transactions on Intelligent Systems,2020,15(1):144-151.[doi:10.11992/tis.201904028]
点击复制

基于几何特征的IC芯片字符分割与识别方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年1期
页码:
144-151
栏目:
人工智能院长论坛
出版日期:
2020-01-01

文章信息/Info

Title:
IC chip character segmentation and recognition method based on geometric features
作者:
郭晓峰12 王耀南12 毛建旭12
1. 湖南大学 电气与信息工程学院, 湖南 长沙 410082;
2. 湖南大学 机器人视觉感知与控制技术国家工程实验室, 湖南 长沙 410082
Author(s):
GUO Xiaofeng12 WANG Yaonan12 MAO Jianxu12
1. College of Electrical and Information Engineering, Hu’nan University, Changsha 410082, China;
2. National Engineering Laboratory for Robot Visual Perception and Control Technology, Hu’nan University, Changsha 410082, China
关键词:
IC芯片字符分割字符识别横纵比面积比几何特征最小外接圆像素差分
Keywords:
IC chipcharacter segmentationcharacter recognitionaspect ratioarea ratiogeometric characteristicsminimum circumscribed circlepixel difference
分类号:
TP391
DOI:
10.11992/tis.201904028
摘要:
针对IC芯片字符的分割与识别问题,提出了一种基于字符几何特征的分割方法和一种基于字符最小外接圆的归一化与重定位方法,使用基于像素差分的模板匹配完成识别。首先,对芯片图像进行直方图均衡化处理,并利用辅助圆进行中线定位和图像校正,定位得到ROI区域并进行均值二值化处理。随后,对二值化ROI图像进行字符分割,以字符的几何特征作为判断条件,从而完成了对缺陷字符的正确分割。之后,对单字符图像提取最大轮廓,利用其轮廓的最小外接圆进行字符的归一化与重定位。最后,对归一化的字符进行差分识别。通过采集4种芯片样本进行实验,结果表明,该方法能够实现芯片字符的准确分割,对于缺陷字符的分割准确率达90%;能够快速精准地识别芯片字符,单字符平均识别时间为4.6 ms,识别准确率达到99.4%。
Abstract:
To solve the problem of character segmentation and recognition in IC chip, a method based on character geometric features and a normalization and relocation method based on the smallest circumferential circle of characters are proposed. The recognition is accomplished by template matching based on pixel difference. Firstly, the histogram equalization is applied to the chip image, and the auxiliary circle is used to locate the center line and correct the image. The ROI region is located and processed by mean of binarization. Subsequently, the binary ROI region image is segmented into characters, and the geometric features of the characters are used as the judgment conditions, thus the correct segmentation of defective characters is completed. Then, the maximum contour is extracted from the single character image, and the minimum circumscribed circle of the contour is used to normalize and relocate the characters. Finally, the normalized characters are differentially recognized. Four kinds of chip samples are collected for experiments. The results show that the method can achieve accurate segmentation of chip characters, and the accuracy of defective characters is 90%. The average recognition time of single character is 4.6 ms, and the recognition accuracy is 99.4%.

参考文献/References:

[1] 吴文昌. 中国IC产业分析综述[J]. 经济师, 2006(6): 36–37
WU Wenchang. A comprehensive analysis on China’s IC industry[J]. China economist, 2006(6): 36–37
[2] GUAN T, KUANG Y C, OOI M P L, et al. Data-driven condition-based maintenance of test handlers in semiconductor manufacturing[C]//Proceedings of 2011 6th IEEE International Symposium on Electronic Design, Test and Application. Queenstown, New Zealand, 2011: 189-194 .
[3] LI Qingyong, REN Shengwei. A real-time visual inspection system for discrete surface defects of rail heads[J]. IEEE transactions on instrumentation and measurement, 2012, 61(8): 2189–2199.
[4] JIA Hongbin, MURPHEY Y L, SHI J, et al. An intelligent real-time vision system for surface defect detection[C]//Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK, 2004.
[5] LANDSTROM A, THURLEY M J. Morphology-based crack detection for steel slabs[J]. IEEE Journal of selected topics in signal processing, 2012, 6(7): 866–875.
[6] MACLEAN J, TSOTSOS J. Fast pattern recognition using gradient-descent search in an image pyramid[C]//Proceedings of the 15th International Conference on Pattern Recognition. Barcelona, Spain, 2000: 2873.
[7] JIANG B C, TASI S L, WANG C C. Machine vision-based gray relational theory applied to IC marking inspection[J]. IEEE transactions on semiconductor manufacturing, 2002, 15(4): 531–539.
[8] CHEN S H, LIAO Tetan. An automated IC chip marking inspection system for surface mounted devices on taping machines[J]. Journal of scientific & industrial research, 2009, 68(5): 361–366.
[9] 张静平. 基于机器视觉的QFN芯片表面检测系统设计[D]. 南京: 东南大学, 2017.
ZHANG Jingping. Design of QFN chips surface detection system based on machine vision[D]. Nanjing: Southeast university, 2017.
[10] 胡洋. IC芯片印刷字符识别算法研究与应用[D]. 武汉: 华中科技大学, 2015.
HU Yang. Research and application of printed character recognition algorithm for IC chips[D]. Wuhan: Huazhong university of science and technology, 2015.
[11] WANG C, JIANG B C, LIN Jingyou, et al. Machine vision-based defect detection in IC images using the partial information correlation coefficient[J]. IEEE transactions on semiconductor manufacturing, 2013, 26(3): 378–384.
[12] 李杜. 字符识别技术研究及其在机器视觉测控中的应用[D]. 无锡: 江南大学, 2011.
LI Du. Character recognition technology and its application in machine vision measurement and controlling[D]. Wu’xi: Jiangnan university, 2011.
[13] 吴成茂. 直方图均衡化的数学模型研究[J]. 电子学报, 2013, 41(3): 598–602
WU Chengmao. Studies on mathematical model of histogram equalization[J]. Acta electronica sinica, 2013, 41(3): 598–602
[14] 戴声奎, 钟峥, 黄正暐. 基于最大熵模型的双直方图均衡算法[J]. 电子学报, 2019, 47(3): 678–685
DAI Shengkui, ZHONG Zheng, HUANG Zhengwei. Maximum entropy model based bi-histogram equalization algorithm[J]. Acta electronica sinica, 2019, 47(3): 678–685
[15] 陈海峰, 雷华, 孔燕波, 等. 基于最小二乘法的改进的随机椭圆检测算法[J]. 浙江大学学报(工学版), 2008, 42(8): 1360–1364
CHEN Haifeng, LEI Hua, KONG Yanbo, et al. An improved randomized algorithm for detecting ellipses based on least square approach[J]. Journal of Zhejiang university (engineering science edition), 2008, 42(8): 1360–1364
[16] 闫蓓, 王斌, 李媛. 基于最小二乘法的椭圆拟合改进算法[J]. 北京航空航天大学学报, 2008, 34(3): 295–298
YAN Bei, WANG Bin, LI Yuan. Optimal ellipse fitting method based on least-square principle[J]. Journal of Beijing university of aeronautics and astronautics, 2008, 34(3): 295–298
[17] JIANG Lianyuan. Fast detection of multi-circle with randomized hough transform[J]. Optoelectronics letters, 2009, 5(5): 397–400.
[18] 郭晓峰, 王耀南, 周显恩, 等. 中国象棋机器人棋子定位与识别方法[J]. 智能系统学报, 2018, 13(4): 517–523
GUO Xiaofeng, WANG Yaonan, ZHOU Xianen, et al. Chess-piece localization and recognition method for Chinese chess robot[J]. CAAI transactions on intelligent systems, 2018, 13(4): 517–523

备注/Memo

备注/Memo:
收稿日期:2019-04-12。
基金项目:国家自然科学基金项目(61733004,61573134,61433016);国家科技支撑计划项目(2015BAF13B00)
作者简介:郭晓峰,硕士研究生,主要研究方向为模式识别、机器视觉和图像处理;王耀南,教授,博士生导师,中国工程院院士,主要研究方向为电动汽车控制、智能控制理论与应用、智能机器人。曾获国家科技进步二等奖、中国发明创业特等奖、省部级科技进步一等奖、省部级科技进步二等奖。取得国家专利12项。出版学术专著多部。 发表学术论文360余篇;毛建旭,教授,博士生导师,主要研究方向为计算机视觉、图像处理与模式识别
通讯作者:毛建旭.E-mail:maojianxu@hnu.edu.cn
更新日期/Last Update: 1900-01-01