[1]马岭,鲁越,蒋慧琴,等.基于小样本学习的LCD产品缺陷自动检测方法[J].智能系统学报,2020,15(3):560-567.[doi:10.11992/tis.201904020]
 MA Ling,LU Yue,JIANG Huiqin,et al.An automatic small sample learning-based detection method for LCD product defects[J].CAAI Transactions on Intelligent Systems,2020,15(3):560-567.[doi:10.11992/tis.201904020]
点击复制

基于小样本学习的LCD产品缺陷自动检测方法

参考文献/References:
[1] LU Rongsheng, SHI Yanqiong, LI Qi, et al. AOI techniques for surface defect inspection[J]. Applied mechanics and materials, 2010, 36: 297-302.
[2] LIU Y H, LIU Yanchen, CHEN Y Z. High-speed inline defect detection for TFT-LCD array process using a novel support vector data description[J]. Expert systems with applications, 2011, 38(5): 6222-6231.
[3] CEN Yigang, ZHAO Ruizhen, CEN Lihui, et al. Defect inspection for TFT-LCD images based on the low-rank matrix reconstruction[J]. Neurocomputing, 2015, 149: 1206-1215.
[4] 张腾达, 卢荣胜, 张书真. 基于二维DFT的TFT-LCD平板表面缺陷检测[J]. 光电工程, 2016, 43(3): 7-15
ZHANG Tengda, LU Rongsheng, ZHANG Shuzhen. Surface defect inspection of TFT-LCD panels based on 2D DFT[J]. Opto-electronic engineering, 2016, 43(3): 7-15
[5] MA Ling, LIU Wei, LIU Yumin, et al. An automatic detection algorithm for surface defects in TFT-LCD[C]//Proceedings of 2013 Second IAPR Asian Conference on Pattern Recognition. Naha, Japan, 2013: 847-851.
[6] 马岭, 蒋慧琴, 刘玉敏. 基于局部特征的驾驶证自动识别系统[J]. 郑州大学学报(工学版), 2017, 38(5): 13-17, 22
MA Ling, JIANG Huiqin, LIU Yumin. Automatic recognition system of driver’s license based on local features[J]. Journal of Zhengzhou University (engineering science edition), 2017, 38(5): 13-17, 22
[7] L?NGKVIST M, KARLSSON L, LOUTFI A. A review of unsupervised feature learning and deep learning for time-series modeling[J]. Pattern recognition letters, 2014, 42: 11-24.
[8] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Siem Reap, Cambodia, 2012: 1097-1105.
[9] BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(8): 1798-1828.
[10] DENG Jia, BERG A, SATHEESH S, et al. Large scale visual recognition challenge[EB/OL]. [2013-11-14]. http://image-net.org/challenges/LSVRC/2013/.
[11] EVERINGHAM M, ALI ESLAMI S M, VAN GOOL L, et al. The PASCAL visual object classes challenge: a retrospective[J]. International journal of computer vision, 2015, 111(1): 98-136.
[12] TAJBAKHSH N, SUZUKI K. Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification: MTANNs vs. CNNs[J]. Pattern recognition, 2017, 63: 476-486.
[13] 郑胤, 陈权崎, 章毓晋. 深度学习及其在目标和行为识别中的新进展[J]. 中国图象图形学报, 2014, 19(2): 175-184
ZHENG Yin, CHEN Quanqi, ZHANG Yujin. Deep learning and its new progress in object and behavior recognition[J]. Journal of image and graphics, 2014, 19(2): 175-184
[14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[15] ZHONG Zhuoyao, JIN Lianwen, XIE Zecheng. High performance offline handwritten chinese character recognition using googlenet and directional feature maps[C]//Proceedings of 2015 13th International Conference on Document Analysis and Recognition. Tunis, Tunisia, 2015: 846-850.
[16] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-V4, inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, USA, 2017.
[17] Lin M, Chen Q, Yan S. Network In Network[C]//Proceedings of the 2th International Conference on Learning Representations. Banff, Canada, 2016.
[18] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 1-9.
[19] Radford A, Metz L, Chintala S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[C]//Proceedings of the 4th International Conference on Learning Representations. San Juan, Puerto Rico, 2016.
[20] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014: 2672-2680.

备注/Memo

收稿日期:2019-04-09。
基金项目:国家自然科学基金—河南联合基金重点项目(U1604262)
作者简介:马岭,教授,博士,主要研究方向为深度学习和机器视觉。主持NSFC-河南联合基金重点项目1项,获河南省科技进步一等奖1项,获发明专利授权5项。发表学术论文30余篇,出版专著1部;鲁越,硕士研究生,主要研究方向为深度学习和机器视觉;蒋慧琴,教授,博士,主要研究方向为深度学习和医疗人工智能。主持和参与完成国家自然科学基金面上项目2项、省部级项目4项,获发明专利授权3项。发表学术论文50余篇
通讯作者:马岭.E-mail:ielma@zzu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134