[1]冯志强,韩峻峰,黄伟铭,等.基于相似修正关系推理的焊接工艺决策[J].智能系统学报,2020,15(5):880-887.[doi:10.11992/tis.201901005]
 FENG Zhiqiang,HAN Junfeng,HUANG Weiming,et al.Decision-making for welding process based on similarity-modified relation inference[J].CAAI Transactions on Intelligent Systems,2020,15(5):880-887.[doi:10.11992/tis.201901005]
点击复制

基于相似修正关系推理的焊接工艺决策(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年5期
页码:
880-887
栏目:
学术论文—智能系统
出版日期:
2020-09-05

文章信息/Info

Title:
Decision-making for welding process based on similarity-modified relation inference
作者:
冯志强1 韩峻峰12 黄伟铭2 柳存根13 甘露4 韩翔希1 焦自权1
1. 北部湾大学 机械与船舶海洋工程学院,广西 钦州 535011;
2. 广西科技大学 电气与信息工程学院,广西 柳州 545006;
3. 上海交通大学 船舶海洋与建筑工程学院,上海 200240;
4. 上海船舶工艺研究所 先进连接技术与自动化装备研究室,上海 200032
Author(s):
FENG Zhiqiang1 HAN Junfeng12 HUANG Weiming2 LIU Cungen13 GAN Lu4 HAN Xiangxi1 JIAO Ziquan1
1. College of Mechanical and Marine Engineering, Beibu Gulf University, Qinzhou 535011, China;
2. College of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China;
3. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
4. Advanced Connection Technology and Automation Equipment Research Laboratory, Shanghai Institute of Shipbuilding Technology, Shanghai 200032, China
关键词:
近似推理相似度量贴近方向剩余蕴涵t-范数修正关系转化算子焊接规范参数
Keywords:
approximate reasoningsimilarity measurenearness directionmodified relationt-normmodification relationshiptranslation operatorwelding code parameters
分类号:
TP181
DOI:
10.11992/tis.201901005
文献标志码:
A
摘要:
针对基于相似度的推理和合成关系推理存在的不足,本文提供一种将相似度量与贴近方向相结合,生成修正或诱导模糊关系的近似推理模式。通过引入模糊概念间贴近方向函数,构造扩展型和缩减型2类修正函数,由此导出推理模型的一般表达形式,并对几个修正算子和构造条件关系的模糊转化算子进行了分析比较。基于该推理模式构建焊接工艺决策模型,由给定熔深来确定合理的焊接规范参数,结果表明:模型可达到较高的计算精度,从而解决了近似推理中输出结果不能对输入事实的每一变化作出准确响应的问题。
Abstract:
Based on the analysis of the characteristics of compositional relation inference and existing similarity reasoning, an approximate reasoning pattern is proposed, which combines the similarity measure and nearness direction to generate a modified (or induced) fuzzy relation. By introducing the function of nearness direction between fuzzy concepts, expansion-typed and reduction-typed modification operators are constructed. Accordingly, a general expression of the reasoning model is given, and the selection of some modification and translation operators for constructing fuzzy relations is discussed. The proposed method is applied to the decision-making of welding process parameters and determining reasonable parameters of welding codes with a given penetration depth. The experimental results show that the reasoning model has high computational accuracy, which will help in the accurate output results of approximate reasoning to every change in the input fact.

参考文献/References:

[1] ZADEH L A. Outline of a new approach to the analysis of complex systems and decision processes[J]. IEEE transactions on systems, man, and cybernetics, 1973, SMC-3(1): 28-44.
[2] MAMDANI E H. Application of fuzzy logic to approximate reasoning using linguistic Synthesis[J]. IEEE transactions on computers, 1977, 26(12): 1182-1191.
[3] MIZUMOTO M, FUKAMI S, TANAKA K. Some methods of fuzzy reasoning, in: advances in fuzzy set theory and applications[M]. New York: North-Holland, 1979.
[4] BACZY?SKI M, JAYARAM B. Fuzzy implications[M]. Berlin: Springer, 2008.
[5] 侯健, 苑飞. 模糊推理方法及模糊系统的逼近性能[M]. 天津: 天津科学技术出版社, 2009.
[6] 李洪兴. 模糊控制的插值机理[J]. 中国科学(E缉), 1998, 41(3): 312-320
LI Hongxing. Interpolation mechanism of fuzzy control[J]. Science in China series E: technological sciences, 1998, 41(3): 312-320
[7] 王国俊. 模糊推理的全蕴涵三I算法[J]. 中国科学(E缉), 1999, 29(1): 43-53
WANG Guojun. Full implication triple I algorithm of fuzzy reasoning[J]. Science in China (series E), 1999, 29(1): 43-53
[8] TURKSEN I B, ZHONG Zhao. An approximate analogical reasoning approach based on similarity measures[J]. IEEE transactions on systems, man, and cybernetics, 1988, 18(6): 1049-1056.
[9] TURKSEN I B, ZHONG Zhao. An approximate analogical reasoning schema based on similarity measures and interval-valued fuzzy sets[J]. Fuzzy sets and systems, 1990, 34(3): 323-346.
[10] CHEN S M. A weighted fuzzy reasoning algorithm for medical diagnosis[J]. Decision support systems, 1994, 11(1): 37-43.
[11] YEUNG D S, TSANG E C C. A comparative study on similarity-based fuzzy reasoning methods[J]. IEEE transactions on systems, man, and cybernetics, Part B (cybernetics), 1997, 27(2): 216-227.
[12] 何映思, 全海金, 邓辉文. 具有还原性的多重多维模糊推理算法[J]. 计算机科学, 2007, 34(4): 145-148
HE Yingsi, QUAN Haijin, DENG Huiwen. An algorithm of general fuzzy inference with the reductive property[J]. Computer science, 2007, 34(4): 145-148
[13] MONDAL B, RAHA S. Similarity-based inverse approximate reasoning[J]. IEEE transactions on fuzzy systems, 2011, 19(6): 1058-1071.
[14] RAHA S, HOSSAIN A, GHOSH S. Similarity based approximate reasoning: fuzzy control[J]. Journal of applied logic, 2008, 6(1): 47-71.
[15] LI Yingfang, QIN Keyun, HE Xingxing, et al. Properties of Raha’s similarity-based approximate reasoning method[J]. Fuzzy sets and systems, 2016, 294: 48-62.
[16] CHEN S M, HSIAO W H, JONG W T. Bidirectional approximate reasoning based on interval-valued fuzzy sets[J]. Fuzzy sets and systems, 1997, 91(3): 339-353.
[17] 李凡, 田应忠, 吕泽华. 基于Vague集的近似推理方法[J]. 华中科技大学学报(自然科学版), 2004, 32(4): 44-46
LI Fan, TIAN Yingzhong, LU Zehua. An approximate reasoning approach based on the measures of similarity between Vague sets[J]. Journal of Huazhong University of Science & Technology (nature science edition), 2004, 32(4): 44-46
[18] 石玉强, 王鸿绪. 一种基于Vague集间距离的双向近似推理方法[J]. 小型微型计算机系统, 2007, 28(4): 661-665
SHI Yuqiang, WANG Hongxu. Bidirectional approxinate reasoning based on distances of vague set[J]. Journal of Chinese computer systems, 2007, 28(4): 661-665
[19] FENG Zhiqiang, LIU Cungen. On similarity-based approximate reasoning in interval-valued fuzzy environments[J]. Informatica, 2012, 36(3): 255-262.
[20] FENG Zhiqiang, LIU Cungen, HUANG Hu. Knowledge modeling based on interval-valued fuzzy rough set and similarity inference: prediction of welding distortion[J]. Journal of Zhejiang University Science C, 2014, 15(8): 636-650.
[21] 王毅, 刘三阳, 张文, 等. 基于包含度的直觉模糊相似度量推理方法[J]. 系统工程与电子技术, 2014, 36(3): 494-500
WANG Yi, LIU Sanyang, ZHANG Wen, et al. Intuitionistic fuzzy similarity measures reasoning method based on inclusion degrees[J]. Systems engineering and electronics, 2014, 36(3): 494-500

相似文献/References:

[1]贾伟.基于包含度的Vague集相似度量方法[J].智能系统学报,2013,8(03):271.
 JIA Wei.A method of similarity measures between vague sets based on inclusion grade[J].CAAI Transactions on Intelligent Systems,2013,8(5):271.

备注/Memo

备注/Memo:
收稿日期:2019-01-06。
基金项目:国家自然科学基金项目(51969001);广西科技重大专项(桂科AA17292003);广西自然科学基金项目(2016GXNSFAA380188,2018GXNSFAA138080)
作者简介:冯志强,教授,博士,担任中国造船工程学会计算机应用学术委员会委员、《Transactions on Intelligent Welding Manufacturing》助编(AE),主要研究方向为数字化造船、先进制造技术。主持国家自然科学基金项目、广西省自然科学基金项目、海洋工程国家重点实验室开放基金项目、水利工程仿真与安全国家重点实验室开放基金等6项。发表学术论文13篇;韩峻峰,教授,博士,担任中国高等教育学会仪器科学及测控技术专业委员会委员、广西自动化学会副理事长,主要研究方向为智能控制、智能信息处理。主持广西省自然科学基金项目、国家中小企业创新基金项目、广西省科技重大专项等多项。发表学术论文40余篇;黄伟铭,硕士研究生,主要研究方向为智能控制、智能信息处理
通讯作者:冯志强.E-mail:fzqsjtu@163.com
更新日期/Last Update: 2021-01-15