[1]魏佳琪,刘华平,王博文,等.触觉手势情感识别的超限学习方法[J].智能系统学报,2019,14(01):127-133.[doi:10.11992/tis.201804029]
 WEI Jiaqi,LIU Huaping,WANG Bowen,et al.Extreme learning machine for emotion recognition of tactile gestures[J].CAAI Transactions on Intelligent Systems,2019,14(01):127-133.[doi:10.11992/tis.201804029]
点击复制

触觉手势情感识别的超限学习方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年01期
页码:
127-133
栏目:
出版日期:
2019-01-05

文章信息/Info

Title:
Extreme learning machine for emotion recognition of tactile gestures
作者:
魏佳琪1 刘华平2 王博文1 孙富春2
1. 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室, 天津 300130;
2. 清华大学 智能技术与系统国家重点实验室, 北京 100084
Author(s):
WEI Jiaqi1 LIU Huaping2 WANG Bowen1 SUN Fuchun2
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China;
2. State Key Lab. of Intelligent Technology and Systems, Tsinghua University, Beijing 100084, China
关键词:
触觉情感识别极限学习机特征提取触摸手势支持向量机人机交互机器学习
Keywords:
hapticemotion recognitionextreme learning machinefeature extractiontouch gesturesupport vector machinehuman-computer interactionmachine learning
分类号:
TP391.4
DOI:
10.11992/tis.201804029
摘要:
为了解决声音和图像情感识别的不足,提出一种新的情感识别方式:触觉情感识别。对CoST(corpus of social touch)数据集进行了一系列触觉情感识别研究,对CoST数据集进行数据预处理,提出一些关于触觉情感识别的特征。利用极限学习机分类器探究不同手势下的情感识别,对14种手势下的3种情感(温柔、正常、暴躁)进行识别,准确度较高,且识别速度快识别时间短。结果表明,手势的不同会影响情感识别的准确率,其中手势“stroke”的识别效果在不同分类器下的分类精度均为最高,且有较好的分类精度,达到72.07%;极限学习机作为触觉情感识别的分类器,具有较好的分类效果,识别速度快;有的手势本身对应着某种情感,从而影响分类结果。
Abstract:
To overcome the deficiencies of sound and image emotion recognition, a new emotion recognition method, haptic emotion recognition, is proposed. A series of haptic emotion recognition studies on Corpus of Social Touch (CoST) datasets were performed. First, the CoST data was preprocessed, presenting some features about haptic emotion recognition. Using the extreme learning machine classifier to explore emotion recognition under different gestures, three kinds of emotions, gentle, normal, and irritable, under 14 kinds of gestures, were identified with higher accuracy and a faster recognition speed (0.04 s). The results showed that differences in gestures will affect the accuracy of emotion recognition, wherein the recognition effect of the gesture "stroke" is the highest in classification accuracy under different classifiers. This new method yielded better classification accuracy, reaching 72.07%. As a classifier of haptic emotion recognition, the extreme learning machine had better classification effect and faster recognition speed. Some gestures corresponded to certain emotions, which affected the classification results.

参考文献/References:

[1] 马蕊, 刘华平, 孙富春, 等. 基于触觉序列的物体分类[J]. 智能系统学报, 2015, 10(3):362-368 MA Rui, LIU Huaping, SUN Fuchun, et al. Object classification based on the tactile sequence[J]. CAAI transactions on intelligent systems, 2015, 10(3):362-368
[2] 郝敏, 刘光远, 温万惠. 基于进化策略的生理信号情感识别[J]. 智能系统学报, 2009, 4(4):352-356 HAO Min, LIU Guangyuan, WEN Wanhui. Recognition of emotion in physiological signals using evolutionary strategies[J]. CAAI transactions on intelligent systems, 2009, 4(4):352-356
[3] MORRISON I, LÖKEN L S, OLAUSSON H. The skin as a social organ[J]. Experimental brain research, 2010, 204(3):305-314.
[4] DEBROT A, SCHOEBI D, PERREZ M, et al. Touch as an interpersonal emotion regulation process in couples’daily lives:the mediating role of psychological intimacy[J]. Personality and social psychology bulletin, 2013, 39(10):1373-1385.
[5] PARK Y W, BAEK K M, NAM T J. The roles of touch during phone conversations:long-distance couples’use of POKE in their homes[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Paris, France, 2013:1679-1688.
[6] GUEST S, DESSIRIER J M, MEHRABYAN A, et al. The development and validation of sensory and emotional scales of touch perception[J]. Attention, perception, & psychophysics, 2011, 73(2):531-550.
[7] KIM N Y, SHIN Y, KIM E Y. Emotion-based textile indexing using neural networks[C]//12th International Conference on Human-Computer Interaction. Beijing, China, 2007:349-357.
[8] HUANG Xinyin, SOBUE S, KANDA T, et al. Linking KANSAI and image features by multi-layer neural networks[C]//11th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems. Vietri sul Mare, Italy, 2007:318-325.
[9] JUNG M M, CANG X L, POEL M, et al. Touch challenge’15:recognizing social touch gestures[C]//Proceedings of the 2015 ACM on International Conference on Multimodal Interaction. Seattle, Washington, USA, 2015:387-390.
[10] ZHOU Nan, DU Jun. Recognition of social touch gestures using 3D convolutional neural networks[C]//Chinese Conference on Pattern Recognition. Chengdu, China, 2016:164-173.
[11] HUGHES D, LAMMIE J, CORRELL N. A Robotic skin for collision avoidance and affective touch recognition[J]. IEEE robotics and automation letters, 2018, 3(3):1386-1393.
[12] MARAMIS C, STEFANOPOULOS L, CHOUVARDA I, et al. Emotion recognition from haptic touch on android device screens[M]//MAGLAVERAS N, CHOUVARDA I, DE CARVALHO P. Precision Medicine Powered by pHealth and Connected Health. Singapore:Springer, 2018:205-209.
[13] GAO Yuan, BIANCHI-BERTHOUZE N, MENG Hongying. What does touch tell us about emotions in touchscreen-based gameplay?[J]. ACM transactions on computer-human interaction, 2012, 19(4):31.
[14] 林连冬, 李思奇, 陈春雨, 等. 触觉传感器非线性补偿仿生算法[J]. 哈尔滨工程大学学报, 2017, 38(2):288-292 LIN Liandong, LI Siqi, CHEN Chunyu, et al. Bionic algorithm for nonlinear compensation of tactile sensors[J]. Journal of Harbin engineering university, 2017, 38(2):288-292
[15] HUANG Guangbin, WANG Dianhui, LAN Yuan. Extreme learning machines:a survey[J]. International journal of machine learning and cybernetics, 2011, 2(2):107-122.
[16] JUNG M M, POPPE R, POEL M, et al. Touching the void——introducing CoST:corpus of social touch[C]//Proceedings of the 16th International Conference on Multimodal Interaction. Istanbul, Turkey, 2014:120-127.
[17] TA V C, JOHAL W, PORTAZ M, et al. The Grenoble system for the social touch challenge at ICMI 2015[C]//Proceedings of the 2015 ACM on International Conference on Multimodal Interaction. Seattle, Washington, USA, 2015:391-398.
[18] JUNG M M, POEL M, POPPE R, et al. Automatic recognition of touch gestures in the corpus of social touch[J]. Journal on multimodal user interfaces, 2017, 11(1):81-96.
[19] YOHANAN S, MACLEAN K E. The Role of affective touch in human-robot interaction:human intent and expectations in touching the haptic creature[J]. International journal of social robotics, 2012, 4(2):163-180.
[20] 顾海巍, 樊绍巍, 金明河, 等. 基于灵巧手触觉信息的未知物体类人探索策略[J]. 哈尔滨工程大学学报, 2016, 37(10):1400-1407 GU Haiwei, FAN Shaowei, JIN Minghe, et al. An anthropomorphic exploration strategy of unknown object based on haptic information of dexterous robot hand[J]. Journal of Harbin engineering university, 2016, 37(10):1400-1407

相似文献/References:

[1]郝 敏,刘光远,温万惠.基于进化策略的生理信号情感识别[J].智能系统学报,2009,4(04):352.
 HAO Min,LIU Guang-yuan,WEN Wan-hui.Recognition of emotion in physiological signals using evolutionary strategies[J].CAAI Transactions on Intelligent Systems,2009,4(01):352.
[2]朱文霖,刘华平,王博文,等.基于视-触跨模态感知的智能导盲系统[J].智能系统学报,2020,15(1):33.[doi:10.11992/tis.201908015]
 ZHU Wenlin,LIU Huaping,WANG Bowen,et al.An intelligent blind guidance system based on visual-touch cross-modal perception[J].CAAI Transactions on Intelligent Systems,2020,15(01):33.[doi:10.11992/tis.201908015]

备注/Memo

备注/Memo:
收稿日期:2018-04-18。
基金项目:国家自然科学基金重点项目(U1613212);河北省自然科学基金项目(E2017202035).
作者简介:魏佳琪,男,1995年生,硕士研究生,主要研究方向为新型磁性材料与器件、触觉交互;刘华平,男,1976年生,副教授,博士生导师,IEEE Senior Member、中国人工智能学会理事,中国人工智能学会认知系统与信息处理专业委员会秘书长,主要研究方向为机器人感知、学习与控制、多模态信息融合。在IEEE Trans.On Automatic Control、IEEE Trans.on Circuits and Systems Ⅱ以及Automatica等国际期刊,以及ICRA、IROS等国际会议中发表论文十余篇;王博文,男,1956年生,教授,博士生导师,主要研究方向为磁致伸缩材料与器件、振动发电技术、磁特性测试技术。发表学术论文200余篇,被SCI收录100余篇。
通讯作者:刘华平.E-mail:hpliu@tsinghua.edu.cn
更新日期/Last Update: 1900-01-01