[1]赵闰霞,蹇木伟,齐强,等.基于Object Proposals并集的显著性检测模型[J].智能系统学报,2018,13(6):946-951.[doi:10.11992/tis.201801009]
 ZHAO Runxia,JIAN Muwei,QI Qiang,et al.Saliency detection model based on the union of Object Proposals[J].CAAI Transactions on Intelligent Systems,2018,13(6):946-951.[doi:10.11992/tis.201801009]
点击复制

基于Object Proposals并集的显著性检测模型

参考文献/References:
[1] 王超, 王浩, 王伟, 等. 基于优化ROI的医学图像分割与压缩方法研究[J]. 重庆邮电大学学报:自然科学版, 2015, 27(2):279-284 WANG Chao, WANG Hao, WANG Wei, et al. Study of optimized ROI based medical image segmentation and compression method[J]. Journal of Chongqing university of posts and telecommunications:natural science edition, 2015, 27(2):279-284
[2] 杨林娜, 安玮, 林再平, 等. 基于空间距离改进的视觉显著性弱小目标检测[J]. 光学学报, 2015, 35(7):0715004 YANG Linna, AN Wei, LIN Zaiping, et al. Small target detection based on visual saliency improved by spatial distance[J]. Acta optica sinica, 2015, 35(7):0715004
[3] ITTI L. Automatic foveation for video compression using a neurobiological model of visual attention[J]. IEEE transactions on image processing, 2004, 13(10):1304-1318.
[4] CHEN Tao, CHENG Mingming, TAN Ping, et al. Sketch2photo:internet image montage[J]. ACM transactions on graphics, 2009, 28(5):1-10.
[5] CHENG Mingming, MITRA N J, HUANG Xiaolei, et al. Global contrast based salient region detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(3):569-582.
[6] HAREL J, KOCH C, PERONA P. Graph-based visual saliency[C]//Proceedings of the 19th International Conference on Neural Information Processing Systems. Cambridge, MA, USA, 2007:545-552.
[7] ERDEM E, ERDEM A. Visual saliency estimation by nonlinearly integrating features using region covariances[J]. Journal of vision, 2013, 13(4):11.
[8] MURRAY N, VANRELL M, OTAZU X, et al. Saliency estimation using a non-parametric low-level vision model[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC, USA, 2011:433-440.
[9] SHI Jianping, YAN Qiong, XU Li, et al. Hierarchical image saliency detection on extended CSSD[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(4):717-729.
[10] YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Washington, DC, USA, 2013:3166-3173.
[11] LIU Tie, YUAN Zejian, SUN Jian, et al. Learning to detect a salient object[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 33(2):353-367.
[12] YANG Jimei, YANG M H. Top-down visual saliency via joint CRF and dictionary learning[C]//Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC, USA, 2012:2296-2303.
[13] ALEXE B, DESELAERS T, FERRARI V. Measuring the objectness of image windows[J]. IEEE transactions on pattern analysis and machine intelligence, 2012, 34(11):2189-2202.
[14] CHENG Mingming, ZHANG Ziming, LIN Wenyan, et al. BING:Binarized normed gradients for objectness estimation at 300fps[C]//Proceedings of IEEE conference on computer vision and pattern recognition. Columbus, OH, USA, 2014:3286-3293.
[15] ZITNICK C L, DOLLáR P. Edge boxes:Locating object proposals from edges[C]//Proceedings of European Conference on Computer Vision. Cham:Springer, 2014:391-405.
[16] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE transactions on pattern analysis and machine intelligence, 2012, 34(11):2274-2282.
[17] HUANG Fang, QI Jinqing, LU Huchuan, et al. Salient object detection via multiple instance learning[J]. IEEE transactions on image processing, 2017, 26(4):1911-1922.
[18] PERAZZI F, KRÄHENBÜHL P, PRITCH Y, et al. Saliency filters:Contrast based filtering for salient region detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA, 2012:733-740.
[19] XI Tao, ZHAO Wei, WANG Han, et al. Salient object detection with spatiotemporal background priors for video[J]. IEEE transactions on image processing, 2017, 26(7):3425-3436.
[20] ZHU Wangjiang, LIANG Shuang, WEI Yichen, et al. Saliency optimization from robust background detection[C]//Proceedings of IEEE conference on computer vision and pattern recognition. Columbus, OH, USA, 2014:2814-2821.
[21] 刘丽, 匡纲要. 图像纹理特征提取方法综述[J]. 中国图象图形学报, 2009, 14(4):622-635 LIU li, KUANG Gangyao. Overview of image textural feature extraction methods[J]. Journal of image and graphics, 2009, 14(4):622-635
[22] 王佐成, 薛丽霞. 一种新的纹理基元发现及表达方法[J]. 重庆邮电大学学报:自然科学版, 2011, 23(1):115-120 WANG Zuocheng, XUE Lixia. A new representation method of image texton[J]. Journal of Chongqing university of posts and telecommunications:natural science edition, 2011, 23(1):115-120
[23] WANG Qi, YUAN Yuan, YAN Pingkun. Visual saliency by selective contrast[J]. IEEE transactions on circuits and systems for video technology, 2013, 23(7):1150-1155.
[24] HARTIGAN J A, WONG M A. Algorithm as 136:a k-means clustering algorithm[J]. Journal of the royal statistical society. series c (applied statistics), 1979, 28(1):100-108.
[25] HOU Xiaodi, ZHANG Liqing. Saliency detection:a spectral residual approach[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN, USA, 2007:1-8.
[26] ACHANTA R, HEMAMI S, Estrada F, et al. Frequency-tuned salient region detection[C]//Proceedings of Conference on Computer vision and pattern recognition. Miami, FL, USA, 2009:1597-1604.
[27] ZHAI Yun, SHAH M. Visual attention detection in video sequences using spatiotemporal cues[C]//Proceedings of the 14th ACM international conference on Multimedia. New York, NY, USA, 2006:815-824.
[28] WEI Y, WEN F, ZHU W, et al. Geodesic saliency using background priors[J]. Computer vision-ECCV 2012, 2012:29-42.
相似文献/References:
[1]周士琪,王耀南,钟杭.融合视觉显著性再检测的孪生网络无人机目标跟踪算法[J].智能系统学报,2021,16(3):584.[doi:10.11992/tis.202101035]
 ZHOU Shiqi,WANG Yaonan,ZHONG Hang.Siamese network combined with visual saliency re-detection for UAV object tracking[J].CAAI Transactions on Intelligent Systems,2021,16(6):584.[doi:10.11992/tis.202101035]

备注/Memo

收稿日期:2018-01-08。
基金项目:国家自然科学基金项目(61601427,61602229).
作者简介:赵闰霞,女,1993年生,硕士研究生,主要研究方向为图像处理;蹇木伟,男,1982年生,教授,博士生导师,CCF计算机视觉专委会委员,CCF多媒体专委会委员,CCF机器学习与模式识别通讯委员,山东数媒专委会委员等。主要研究方向为图像处理、模式识别、多媒体计算、机器学习、认知科学。主持国家自然科学基金等研究课题10余项。以第一发明人或第一申请人被授予3项国家专利,其中1项国家发明专利和2项国家实用新型专利。发表学术论文50余篇。被SCI检索的国际期刊论文14篇、被EI检索论文40余篇;齐强,男,1990年生,硕士研究生,主要研究方向为图像处理、模式识别、水下视觉。
通讯作者:蹇木伟.E-mail:20173016@sdufe.edu.cn

更新日期/Last Update: 2018-12-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134