[1]侯涛,张强.基于T-S型模糊加权的多模软切换的风电机组变桨控制[J].智能系统学报,2018,13(04):625-632.[doi:10.11992/tis.201710009]
 HOU Tao,ZHANG Qiang.Multi-mode soft-switch variable-pitch control of wind turbines based on T-S fuzzy weighting[J].CAAI Transactions on Intelligent Systems,2018,13(04):625-632.[doi:10.11992/tis.201710009]
点击复制

基于T-S型模糊加权的多模软切换的风电机组变桨控制(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年04期
页码:
625-632
栏目:
出版日期:
2018-07-05

文章信息/Info

Title:
Multi-mode soft-switch variable-pitch control of wind turbines based on T-S fuzzy weighting
作者:
侯涛 张强
兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070
Author(s):
HOU Tao ZHANG Qiang
School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
关键词:
风电机组电动变桨T-S型模糊加权多模切换控制软切换切换振荡多模态变桨控制
Keywords:
wind turbineselectric variable pitchT-S fuzzy weightingmulti-mode switching controlsoft switchswitch oscillationmulti-modepitch control
分类号:
TP18;TM614
DOI:
10.11992/tis.201710009
摘要:
变桨控制是确保风电机组在额定风速以上恒功率运行的一种有效的控制方式。变桨控制执行机构的动作频繁且幅度较大,增加了风电机组各部分的机械疲劳载荷,影响发电机的输出电能质量和机组的使用寿命;现有的切换控制方法多数只在某一阈值进行切换,导致切换振荡。针对上述问题,提出了基于T-S型模糊加权的多模软切换变桨控制策略,该方法将智能控制与传统控制相结合,根据风电机组发电机的实时转速与其额定转速的偏差及其变化率,利用T-S型模糊推理,完成基于模糊控制、模糊自适应PID控制和PI控制的多模控制器输出的平滑过渡,实现软切换,其优点是兼顾3种控制方法的优势,解决了切换振荡问题。搭建了永磁直驱风力发电机组变桨的多模软切换控制的仿真模型。仿真结果表明,此方法展现了3种控制方法的优点,克服了切换振荡,减缓了执行机构的频繁动作,使桨距角调节更加平滑,输出功率精度更高,脉动更小。
Abstract:
Variable-pitch control is an effective technique for ensuring the constant-power operation of wind turbines over the range of rated wind speeds. The frequent and strong action of a pitch actuator increases the mechanical fatigue load of wind turbines, affects the output quality of the generator, and reduces the service life of wind turbines. Most current switching methods switch only at a certain threshold, which causes switch oscillation. To address these issues, we propose a multi-mode soft switching variable-pitch control strategy based on Takagi-Sugeno (T-S) fuzzy weighting. In this method, intelligent and traditional controls are combined, based on the deviation of the real-time rotation speed of the generator from its rated rotation speed and the change rate of the real-time rotation speed. T-S fuzzy inference is also utilized to achieve a smooth transition in the output of the multi-mode controller by the use of fuzzy control, fuzzy adaptive proportional-integral-derivative control, and proportional-integral control to realize a soft switch. This method simultaneously employs the advantages of three kinds of control methods and solves the switch oscillation problem. In this study, we built a multi-mode soft-switch control model to address the variable pitch of permanent-magnet direct-drive wind turbines. The simulation results show that this method exhibits the advantages of the three control methods, overcomes switch oscillation, slows frequent action of the actuator, smooths the adjustment of the pitch angle, improves the precision of the output power, and reduces fluctuation.

参考文献/References:

[1] YIN Xiuxing, LIN Yonggang, LI Wei, et al. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines[J]. ISA transactions, 2015, 58:629-634.
[2] YUAN Yuan, TANG J. Adaptive pitch control of wind turbine for load mitigation under structural uncertainties[J]. Renewable energy, 2017, 105:483-494.
[3] SONG Dongran, YANG Jian, DONG Mi, et al. Model predictive control with finite control set for variable-speed wind turbines[J]. Energy, 2017, 126:564-572.
[4] 吴洁, 孟克其劳, 贾大江, 等. 1.5MW永磁直驱风力发电机组变桨控制系统的改进[J]. 太阳能学报, 2016, 37(8):2074-2079. WU Jie, MENG Keqilao, JIA Dajiang, et al. Improved pitch control system of 1.5 MW permanent magnet direct drive wind turbine[J]. Atct energiae solaris sinica, 2016, 37(8):2074-2079.
[5] MORADI H, VOSSOUGHI G. Robust control of the variable speed wind turbines in the presence of uncertainties:a comparison between H, and PID controllers[J]. Energy, 2015, 90:1508-1521.
[6] 任丽娜, 吕明月, 王振臣. 改进蜂群算法在风机变桨距控制中的应用[J]. 机械设计与制造, 2015, 36(3):43-46. REN Lina, LV Mingyue, WANG Zhenchen. Improved bee colony algorithm on the wind turbine pitch control[J]. Machinery design & manufacture, 2015, 36(3):43-46.
[7] Yin Xiuxing, Lin Yonggang, Li Wei, et al. A novel fuzzy integral sliding mode current control strategy for maximizing wind power extraction and eliminating voltage harmonics[J]. Energy, 2015, 85:677-686.
[8] WANG Baohua, Qin Shengsheng. Backstepping sliding mode control of variable pitch wind power system[C]//2010 Asia-Pacific Power and Energy Engineering Conference (APPEEC). Chengdu, China, 2010:1-3.
[9] MEDJBER A, GUESSOUM A, BELMILI H, et al. New neural network and fuzzy logic controllers to monitor maximum power for wind energy conversion system[J]. Energy, 2016, 106:137-146.
[10] QIN Bin, ZHOU Hao, DU Kang, et al. Sliding mode control of pitch angle based on RBF neural-network[J]. Transactions of China electrotechnical society, 2013, 28(5):37-41.
[11] 周飞航, 刘军. 基于状态反馈的直驱风电系统模糊控制策略[J]. 电网技术, 2016, 40(9):2758-2763. ZHOU Feihang, LIU Jun. Fuzzy control strategy of direct-drive wind power system based on state feedback[J]. Power system technology, 2016, 40(9):2758-2763.
[12] ANDERSON P M, BOSE A. Stability simulation of wind turbine systems[J]. IEEE Transactions on Power Apparatus and Systems, 1983, PAS-102(12):3791-3795.
[13] BOUKHEZZAR B, LUPU L, SIGUERDIDJANE H, et al. Multivariable control strategy for variable speed, variable pitch wind turbines[J]. Renewable Energy, 2007, 32(8):1273-1287.
[14] HUI J, BAKHSHAI A. A new adaptive control algorithm for maximum power point tracking for wind energy conversion systems[C]//2008 PESC Proceedings of the Power Electronics Specialist Conference. Rhodes, Greece, 2008:4003-4007.
[15] DAHBI A, NAIT-SAID N, NAIT-SAID M-S. A novel combined MPPT-pitch angle control for wide range variable speed wind turbine based on neural network[J]. International journal of hydrogen energy, 2016, 41(22):9427-9442.
[16] ZHANG Xinfang, XU Daping. Adaptive fuzzy control for variable speed variable pitch wind turbines[J]. IFAC power plants and power systems control, 2003, 36(20):1031-1036.
[17] BAGHERI P, Sun Qiao. Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics[J]. ISA transactions, 2016, 63:233-241.
[18] 唐酿, 肖湘宁, 陈众. 基于Sugeno模糊推理的静止无功补偿器多模态切换方法[J]. 电网技术, 2011, 35(8):140-143. TANG Niang, XIAO Xiangning, CHEN Zhong. A method of multi-mode switching for SVC based on sugeno fuzzy inference[J]. Power system technology, 2011, 35(8):140-143.

备注/Memo

备注/Memo:
收稿日期:2017-10-18。
基金项目:甘肃省自然科学基金项目(1606RJZA002);甘肃省高等学校科研项目(2017A-026).
作者简介:侯涛,男,1975年生,教授,博士,主要研究方向为智能信息处理与智能控制;张强,男,1993年生,硕士研究生,主要研究方向为风力发电与智能控制。
通讯作者:侯涛.E-mail:ht_houtao@163.com.
更新日期/Last Update: 2018-08-25