[1]贾鹤鸣,朱传旭,张森,等.对偶树复小波与空域信息的手势识别分类研究[J].智能系统学报,2018,13(4):619-624.[doi:10.11992/tis.201708003]
 JIA Heming,ZHU Chuanxu,ZHANG Sen,et al.Research on gesture recognition and classification of dual-tree complex wavelet and spatial information[J].CAAI Transactions on Intelligent Systems,2018,13(4):619-624.[doi:10.11992/tis.201708003]
点击复制

对偶树复小波与空域信息的手势识别分类研究

参考文献/References:
[1] BARROS P, PARISI G I, JIRAK D, et al. Real-time gesture recognition using a humanoid robot with a deep neural architecture[C]//201414th IEEE-RAS International Conference on Humanoid Robots. Madrid, Spain, 2014:646-651.
[2] DAVIS C C. Chronicler of the cavaliers:Some letters from and to William Alexander Caruthers, M. D. (1802-1846)[J]. The Virginia magazine of history and biography, 1947, 55(3):213-232.
[3] MIYASHITA T, SHINOZAWA K, HAGITA N. Gesture translation for heterogeneous robots[C]//20066th IEEE-RAS International Conference on Humanoid Robots. Genova, Italy, 2006:462-467.
[4] KAPUSCINSKI T, OSZUST M, WYSOCKI M. Hand gesture recognition using time-of-flight camera and viewpoint feature histogram[M]//KORBICZ J, KOWAL M (eds). Intelligent Systems in Technical and Medical Diagnostics. Berlin, Germany:Springer, 2014:403-414
[5] 谭台哲, 韩亚伟, 邵阳. 基于RGB-D图像的手势识别方法[J]. 计算机工程与设计, 2018, 39(2):511-515. TAN Taizhe, HAN Yawei, SHAO Yang. Gesture recognition method based on RGB-D image[J]. Computer engineering and design, 2018, 39(2):511-515.
[6] 刘淑萍, 刘羽, 於俊, 等. 结合手指检测和HOG特征的分层静态手势识别[J]. 中国图象图形学报, 2015, 20(6):781-788. LIU Shuping, LIU Yu, YU Jun, et al. Hierarchical static hand gesture recognition by combining finger detection and HOG features[J]. Journal of image and graphics, 2015, 20(6):781-788.
[7] 赵磊, 周亦敏. 一种基于改进DTW-IMP算法的手势识别[J]. 软件导刊, 2017, 16(11):12-15, 21. ZHAO Lei, ZHOU Yimin. A gesture recognition based on improved DTW-IMP algorithm[J]. Software guide, 2017, 16(11):12-15, 21.
[8] 薛乐, 李立轻, 汪军. 应用频谱图的机织物纹理分析[J]. 纺织学报, 2015, 36(7):55-60. XUE Le, LI Liqing, WANG Jun. Study on woven fabric texture using frequency spectrum[J]. Journal of textile research, 2015, 36(7):55-60.
[9] 汪丹, 张亚非. SVM和BP算法在气体识别中的对比研究[J]. 传感技术学报, 2005, 18(1):201-204. WAN Dan, ZHANG Yafei. Research of Gas Classification Based on SVM Compared with BP[J]. Journal of transcluction technology, 2005, 18(1):201-204.
[10] 陈浩, 陈立辉, 毕笃彦, 等. BP网络和支持向量机在非线性函数逼近中的应用[J]. 航空计算技术, 2004, 34(3):27-30. CHEN Hao, CHEN Lihui, BI Duyan, et al. The appliance of BP-network and SVM in approach of non-linear function[J]. Aeronautical Computer Technique, 2004, 34(3):27-30. (本条文献为中文文献)
[11] LIANG Haonan, ZHANG Hanqi. Identification of slope stability based on the contrast of BP neural network and SVM[C]//20103rd IEEE International Conference on Computer Science and Information Technology. Chengdu, China, 2010:347-350.
[12] 周宇晴, 秦梦芝, 马志宏. 支持向量机和BP神经网络在可见-近红外光谱检测药品中的比较与应用[J]. 天津农学院学报, 2016, 23(2):49-52. ZHOU Yuqing, QIN Mengzhi, MA Zhihong. Comparison and application of support vector machine and BP neural network in visible-near infrared spectroscopy detection of drugs[J]. Journal of Tianjin agricultural university, 2016, 23(2):49-52.
相似文献/References:
[1]尤雅萍,成运,苏松志,等.基于谱域-空域结合特征和图割原理的高光谱图像分类[J].智能系统学报,2015,10(2):201.[doi:10.3969/j.issn.1673-4785.201410040]
 YOU Yaping,CHENG Yun,SU Songzhi,et al.Hyperspectral image classification based on spectral-spatial combination features and graph cut[J].CAAI Transactions on Intelligent Systems,2015,10():201.[doi:10.3969/j.issn.1673-4785.201410040]
[2]余思泉,曹江涛,李平,等.基于空间金字塔特征包的手势识别算法[J].智能系统学报,2015,10(3):429.[doi:10.3969/j.issn.1673-4785.201405054]
 YU Siquan,CAO Jiangtao,LI Ping,et al.Hand gesture recognition based on the spatial pyramid bag of features[J].CAAI Transactions on Intelligent Systems,2015,10():429.[doi:10.3969/j.issn.1673-4785.201405054]
[3]董旭德,许源平,舒红平,等.基于质心分水岭算法的静态手势分割算法模型[J].智能系统学报,2019,14(2):346.[doi:10.11992/tis.201804028]
 DONG Xude,XU Yuanping,SHU Hongping,et al.Static gesture segmentation algorithm model based on centroid watershed algorithm[J].CAAI Transactions on Intelligent Systems,2019,14():346.[doi:10.11992/tis.201804028]

备注/Memo

收稿日期:2017-08-03。
基金项目:中央高校基本科研业务费专项资金项目(2572014BB03);国家自然科学基金项目 (31470714,51609048);黑龙江省研究生教育创新工程项目(JGXM_HLJ_2016014).
作者简介:贾鹤鸣,男,1983年,副教授,博士,主要研究方向为非线性控制理论与信息检测技术;朱传旭,男,1993年,硕士研究生,主要研究方向为智能控制与信息处理技术;张森,男,1994年,硕士研究生,主要研究方向为智能控制与检测技术。
通讯作者:贾鹤鸣.E-mail:jiaheminglucky99@126.com.

更新日期/Last Update: 2018-08-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134