[1]池小文,倪友聪,杜欣,等.基于智能手机的健身跑数据采集及演化建模[J].智能系统学报,2017,12(05):702-709.[doi:10.11992/tis.201706045]
 CHI Xiaowen,NI Youcong,DU Xin,et al.Smartphone-based speed acquisition and evolutionary modeling for fitness running[J].CAAI Transactions on Intelligent Systems,2017,12(05):702-709.[doi:10.11992/tis.201706045]
点击复制

基于智能手机的健身跑数据采集及演化建模(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年05期
页码:
702-709
栏目:
出版日期:
2017-10-25

文章信息/Info

Title:
Smartphone-based speed acquisition and evolutionary modeling for fitness running
作者:
池小文1 倪友聪1 杜欣1 叶鹏2 吴燕丹3
1. 福建师范大学 软件学院, 福建 福州 350117;
2. 武汉纺织大学 数学与计算机学院, 湖北 武汉 430200;
3. 福建师范大学 体育科学学院, 福建 福州 350117
Author(s):
CHI Xiaowen1 NI Youcong1 DU Xin1 YE Peng2 WU Yandan3
1. Faculty of Software, Fujian Normal University, Fuzhou 350117, China;
2. School of Mathematics and Computer, Wuhan Textile University, Wuhan 430200, China;
3. Physical Science School, Fujian Normal University, Fuzhou 350117, China
关键词:
健身跑智能手机中值滤波三轴加速度方向传感器速度采集演化建模
Keywords:
fitness runningsmart phonemedian filterthree-axis accelerationorientation sensorspeed acquisitionevolutionary modeling
分类号:
TP391
DOI:
10.11992/tis.201706045
摘要:
针对Brzostowski方法因采集的速度数据精度不高、采用的建模算法搜索能力受限,而导致难以获取高精度健身跑模型的问题,本文提出一种基于智能手机的健身跑速度数据获取及演化建模方法。首先,提出基于智能手机多传感器和中值滤波的健身跑速度采集方法,以滤除由于手机间歇性的姿态变化而产生的三轴加速度信号脉冲噪声,并结合方向传感器对手机三轴加速度中包含的重力分量进行过滤;然后,设计一种健身跑演化建模算法,以增大搜索空间为获取更优的健身跑模型提供支持。实验结果表明,本文提出的方法可以比Brzostowski方法获取更为精确的速度和健身跑运动模型。
Abstract:
Due to the low precision of speed acquisition and the limited search ability of modeling algorithms, it is difficult to obtain a highly precise fitness running model by applying the Brzostowski method. In this paper, we propose a speed acquisition and evolutionarymodeling method for fitness running that is based on the smart phone. First,we introduce a fitness running speed acquisition method based on multiple smartphone sensors and a median filter that can remove the impulse noise of three-axis acceleration signals.This noiseisgenerated by the intermittent gesture changes associated with the use of smartphones.In addition, this method can filter out the gravitational component in three-axis acceleration.Next, we designed an evolutionary modeling algorithm to enlarge the search space to obtain a better fitness running model. The experimental results show that the proposed approach can obtain more accurate speed and fitness running models than the Brzostowski’s approach.

参考文献/References:

[1] 颜庆.不同强度和时间有氧健身跑对体脂的影响[J].武汉体育学院学报, 2013, 47(10):54-58.YAN Qing.Effect of different intensity and duration of aerobic fitness exercise on body fat[J]. Journal of wuhan institute of physical education, 2013, 47(10):54-58.
[2] ALLMAN K. Five fitness apps worth the download[J]. LSJ:law society of NSW journal, 2017(31):57.
[3] RENAUDIN V, SUSI M, LACHAPELLE G. Step length estimation using handheld inertial sensors[J]. Sensors, 2012, 12(7):8507-8525.
[4] HO N H, TRUONG P H, JEONG G M. Step-detection and adaptive step-length estimation for pedestrian dead-reckoning at various walking speeds using a smartphone[J]. Sensors, 2016, 16(9):1423.
[5] LI F, ZHAO C, DING G, et al. A reliable and accurate indoor localization method using phone inertial sensors[C]//Proceedings of the 2012 ACM Conference on Ubiquitous Computing. Pittsburgh, USA, 2012:421-430.
[6] 谢雨驼, 边耐政. Android手机端运动量检测的研究与应用[J]. 计算机应用与软件, 2012, 29(10):227-229.XIE Yutuo, BIAN Naizheng. RESEARCH and application of physical activity consumption detection on android smart phone[J]. Computer applications and software, 2012, 29(10):227-229.
[7] KWAPISZ J R, WEISS G M, MOORE S A. Activity recognition using cell phone accelerometers[J]. ACM sigkdd explorations newsletter, 2011, 12(2):74-82.
[8] BAI Y W, YU C H, WU S C. Using a three-axis accelerometer and GPS module in a smart phone to measure walking steps and distance[C]//2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE). Toronto, Canada, 2014:1-6.
[9] 马松岩. 基于iOS平台的健身应用的设计与实现[D]. 北京:北京邮电大学, 2013.MA Songyan. The design and implementation of a pedometer application based on ios platform[D]. Beijing:Beijing University of Posts and Telecommunications, 2013.
[10] FASEL B, DUC C, DADASHI F, et al. A wrist sensor and algorithm to determine instantaneous walking cadence and speed in daily life walking[J]. Med biol eng comput, 2017, 55:1773-1785.
[11] NEVILLE J G, ROWLANDS D D, LEE J B, et al. A Model for comparing over-ground running speed and accelerometer derived step rate in elite level athletes[J]. IEEE sensors journal, 2016, 16(1):185-191.
[12] 赵寅, 徐国华, 杨超, 等. 基于模糊卡尔曼滤波算法的速度估算方法[J]. 仪表技术与传感器, 2013(12):80-83.ZHAO Yin, XU Guohua, YANG Chao, et al. Estimation of speed based on fuzzy-Kalman filter[J]. Instrument technique and sensor, 2013(12):80-83.
[13] KRANZ M, MÖLLER A, HAMMERLA N, et al. The mobile fitness coach:towards individualized skill assessment using personalized mobile devices[J]. Pervasive and mobile computing, 2013, 9(2):203-215.
[14] 周萍, 田磊. 有氧健身跑对大学生身体意象影响的研究[J]. 运动, 2016(21):53-54.ZHOU Ping, TIAN Lei. The Research about effect of aerobic fitness running on body intention[J]. Sports, 2016(21):53-54.
[15] SORNANATHAN L, KHALIL I. Fitness monitoring system based on heart rate and SpO2 level[C]//201010th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB). Kuantan, Malaysia, 2010:1-5.
[16] FUDGE B W, WILSON J, EASTON C, et al. Estimation of oxygen uptake during fast running using accelerometry and heart rate[J]. Medicine and science in sports and exercise, 2007, 39(1):192-198.
[17] 孙泊, 刘宇, 庄涛, 等. 基于腰部加速度计的行走能耗建模实验研究[J]. 体育科学, 2013(4):36-41.SUN Bo, LIU Yu, ZHUANG Tao, et al. The experimental research on modeling of walking energy expenditure based on the waist accelerometer[J]. China sport science, 2013(4):36-41.
[18] GARCIA-GARCIA F, GARCIA-SÁEZ G, CHAUSA P, et al. Statistical machine learning for automatic assessment of physical activity intensity using multi-axial accelerometry and heart rate[J].Lecture notes in computer science, 2011, 6747:70-79.
[19] CHENG T M, SAVKIN A V, CELLER B G, et al. Nonlinear modeling and control of human heart rate response during exercise with various work load intensities[J]. IEEE transactions on biomedical engineering, 2008, 55(11):2499-2508.
[20] SCALZI S, TOMEI P, VERRELLI C M. Nonlinear control techniques for the heart rate regulation in treadmill exercises[J]. IEEE transactions on biomedical engineering, 2012, 59(3):599-603.
[21] BRZOSTOWSKI K, DRAPA?A J, GRZECH A, et al. Adaptive decision support system for automatic physical effort plan generation-data-driven approach[J].Cybernetics and systems, 2013, 44(2/3):204-221.
[22] FUJIKI Y, TSIAMYRTZIS P, PAVLIDIS I. Making sense of accelerometer measurements in pervasive physical activity applications[C]//CHI’09 Extended Abstracts on Human Factors in Computing Systems. Boston, USA, 2009:3425-3430.
[23] KUO Y S, PANNUTO P, HSIAO K J, et al. Luxapose:Indoor positioning with mobile phones and visible light[C]//Proceedings of the 20th Annual International Conference on Mobile Computing and Networking.Maui, USA, 2014:447-458.
[24] SUN H, MCINTOSH S. Phone call detection based on smartphone sensor data[C]//International Conference on Cloud Computing and Security. Nanjing, China, 2016:284-295.
[25] SHI D, WANG R, WU Y, et al. A novel orientation-and location-independent activity recognition method[J]. Personal and ubiquitous computing, 2017, 21(3):1-15.
[26] WANG Z, ZHANG D. Progressive switching median filter for the removal of impulse noise from highly corrupted images[J]. IEEE transactions on circuits and systems Ⅱ:analog and digital signal processing, 1999, 46(1):78-80.
[27] FORSYTHE G E, MOLER C B, MALCOLM M A. Computer methods for mathematical computations[M]. Upper Saddle River:Prentice-Hall, 1977.
[28] Goulden K J. Effect sizes for research:a broad practical approach[J]. Lawrence erlbaum associates, 2005, 27(5):419-420.

相似文献/References:

[1]周后飞,刘华平,石红星.智能手机车辆异常驾驶行为检测方法[J].智能系统学报,2016,11(3):410.[doi:10.11992/tis.201504022]
 ZHOU Houfei,LIU Huaping,SHI Hongxing.Abnormal driving behavior detection based on the smart phone[J].CAAI Transactions on Intelligent Systems,2016,11(05):410.[doi:10.11992/tis.201504022]

备注/Memo

备注/Memo:
收稿日期:2017-06-12。
基金项目:国家自然科学基金项目(61305079,61370078);福建省自然科学基金项目(2015J01235,2017J01498);福建省教育厅JK类项目(JK2015006);武汉大学软件工程国家重点实验室开放基金项目(SKLSE2014-10-02).
作者简介:池小文,男,1992年生,硕士研究生,主要研究方向为基于搜索的软件设计;倪友聪,男,1976年生,副教授,主要研究方向为基于搜索的软件设计、软件体系结构;杜欣,女,1979年生,副教授,主要研究方向为基于搜索的软件工程、演化计算。
通讯作者:倪友聪.E-mail:youcongni@foxmail.com
更新日期/Last Update: 2017-10-25