[1]魏伟一,文雅宏.一种精英反向学习的萤火虫优化算法[J].智能系统学报,2017,12(05):710-716.[doi:10.11992/tis.201706014]
 WEI Weiyi,WEN Yahong.Firefly optimization algorithm utilizing elite opposition-based learning[J].CAAI Transactions on Intelligent Systems,2017,12(05):710-716.[doi:10.11992/tis.201706014]
点击复制

一种精英反向学习的萤火虫优化算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年05期
页码:
710-716
栏目:
出版日期:
2017-10-25

文章信息/Info

Title:
Firefly optimization algorithm utilizing elite opposition-based learning
作者:
魏伟一 文雅宏
西北师范大学 计算机科学与工程学院, 甘肃 兰州 730070
Author(s):
WEI Weiyi WEN Yahong
College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China
关键词:
萤火虫算法精英反向学习优化算法精英群体反向解反向学习策略差分演化变异自适应步长
Keywords:
firefly algorithmelite opposition-based learningoptimized algorithmelite groupopposite solutionsopposition-based learning strategydifferential evolutionary mutationadaptive step size
分类号:
TP309.2
DOI:
10.11992/tis.201706014
摘要:
为了提高传统萤火虫算法的收敛速度和求解精度,提出了一种精英反向学习的萤火虫优化算法。通过反向学习策略构造精英群体,在精英群体构成的区间上求普通群体的反向解,增加了群体的多样性,提高了算法的收敛速度;同时,为了避免最优个体陷入局部最优,使整个群体在搜索过程中出现停滞,提出了差分演化变异策略;最后,提出了一种线性递减的自适应步长来平衡算法的开发能力。实验结果表明,算法在收敛速度和收敛精度上有更好的效果。
Abstract:
To increase the convergence speed and solution accuracy of the traditional firefly algorithm, in this paper, we propose a firefly optimization algorithm that utilizes elite opposition-based learning. Using an opposition-based learning strategy, we constructed an elite group and, in the interval of the elite group, we solved the opposite solutions of the ordinary groups. This strategy could increase group diversity and improve the convergence speed of the algorithm. To prevent the optimal individual from falling into the local optimum, which could cause stagnation of the whole group during the search process, we introduce a differential evolutionary mutation strategy. Finally, we propose an adaptive step size with a linear decrease to balance the development ability of the algorithm. Experimental results show that the proposed algorithm can increase convergence speed and accuracy.

参考文献/References:

[1] YANG X S. Firefly algorithms for multimodal optimiz-ation[C]//Stochastic Algorithms:Foundations and Applic-ations. Sapporo, Japan, 2009, 5792:169-178.
[2] 朱书伟,周治平,张道文. 融合并行混沌萤火虫算法的K-调和均值聚类[J]. 智能系统学报,2015,10(6):872-880.ZHU Shuxin, ZHOU Zhiping, ZHANG Daowen. Kharm-onic means clustering merged with parallel chaotic firefly algorithm[J]. CAAI transactions on intelligent systems,2015,37(2):342-347.
[3] 赵杰, 雷秀娟,吴振强. 基于最优类中心扰动的萤火虫聚类算法[J]. 计算机工程与科学, 2015, 37(2):342-347.ZHAO Jie, LEI Xiujuan, WU Zhenqiang.A clustering al-gorithm for Fireflies based on optimal class center pert-urbation[J]. Computer engineering & science,2015, 37(2):342-347.
[4] 莫愿斌, 马彦追, 郑巧燕.单纯形法的改进萤火虫算法及其在非线性方程组求解中的应用[J]. 智能系统学报, 2014, 9(6):747-755.MO Yuanbin, MA Yanzhui, ZHENG Qiaoyan. Improved firefly algorithm based on simplex method and its appli-cation in solving non-near equation groups[J]. CAAI tr-ansactions on intelligent systems,2014, 9(6):747-755.
[5] HORNG M H. Vector quantization using the firefly al-gorithm for image compression[J]. Expert systems with applications, 2012, 39(1):1078-1091.
[6] MARICHELVAM M K, PRABAHARAN T, YANG XS.A discrete firefly algorithm for the multi-objective hy-brid flow shop scheduling problems[J].IEEE transactio-ns on evolutionary computation, 2014, 18(2):301-305.
[7] YANG X S, HOSSEINI S S S, GANDOMI A. Firefly algorithm for solving non-convex economic dispatch pr-oblems with valve loading effect[J].Applied soft com-puting, 2012, 12(3):1180-1186.
[8] SENTHILNATH J, OMKAR S, MANI V. Clustering using firefly algorithm:performance study[J]. Swarm and evolutionary computation, 2011, 1(3):164-171.
[9] FALCON R, ALMEID M, NAYAK A. Fault identification with binary adaptive fireflies in parallel and distrib-uted systems[C]//2011 IEEE Congress on Evolutionary Computation(CEC).New Orleans, USA, 2011:1359-1366.
[10] YU S, ZHU S, MA Y, et al. Enhancing firefly algorit-hmusing generalized opposition based learning[J]. Com-puting, 2015, 97(7):741-754.
[11] 周凌云, 丁立新, 何进荣. 精英正交学习萤火虫算法[J]. 计算机科学, 2015, 42(10):211-216.ZHOU Lingyun,DING Lixin, HE Jinrong. Elite-orth-ogonal learning firefly algorithm[J].Computer science, 2015, 42(10):211-216.
[12] 李洋.蛙跳萤火虫算法及其在含风电场的电力系统调度中的应用[D]. 上海:华东理工大学,2013.LI Yang. Leapfrog firefly algorithm and application in di-spatch of power system containing wind farm[D]. Shanghai:East China University of Science and Technol ogy,2013.
[13] 符强,童楠, 赵一鸣.一种基于多种群学习机制的萤火虫优化算法[J]. 计算机应用研究, 2013, 30(12):3600-3603.FU Qiang,TONG Nan, ZHAO Yiming. Firefly algorithm based on multi-grouplearning mechanism[J]. Application research of computers, 2013, 30(12):3600-3603.
[14] FISTER I, JR F, YANG X S, et al. A comprehensivereview of firefly algorithms[J]. Swarm and evolutionary computation, 2013, 13(1):34-46.
[15] VERMA O P, AGGARWAL D, PATODI T. Opposition and dimensional based modified firefly algorithm[J].Ex-pert-systems with applications an international journal,2016, 44(C):168-176.
[16] 汪慎文,丁立新,谢大同.应用精英反向学习策略的混合差分演化算法[J].武汉大学学报:理学版, 2013, 59(3):111-16.WANG Shenwen,DING Lixin, XIE Datong. A hybrid differential evolution with elite opposition-based learning[J]. Journal of Wuhan university:natural science edition, 2013, 59(3):111-116.
[17] 程美英, 倪志伟, 朱旭辉. 萤火虫优化算法理论研究综述[J]. 计算机科学, 2015, 42(4):19-24.CHENG Meiying, NI Zhiwei, ZHU Xuhui.Over-view on glow-worm swarm optimization or firefly algorithm[J]. Computer science, 2015, 42(4):19-24.
[18] 汪慎文, 丁立新, 谢大同. 应用反向学习策略的群搜索优化算法[J]. 计算机科学, 2012, 39(9):183-187.WANG Shenwen,DING Lixin, XIE Datong. Group search optimizer applying opposition-based learning[J]. Computer science, 2012, 39(9):183-187.
[19] 周新宇, 吴志健, 王晖,等. 一种精英反向学习的粒子群优化算法[J]. 电子学报, 2013, 41(8):1647-1652. ZHOU Xinyu, WU Zhijian,WANG Hui,et al. A particle swarm optimization algorithm based on elite reverse learning[J].Sinica Acta electronica, 2013, 41(8):1647-1652.
[20] YANG XS. Firefly Algorithm Lévy flights and global optimization[C]//Research and Development in Intelligent Systems XXVI. London, Springer, 2010:209-218.
[21] TILAHUN S L, HONG C O. Modified firefly algorithm[J]. Journal of applied mathematics, 2012, 2012(12):2428-2439.

相似文献/References:

[1]郭丽萍,李向涛,谷文祥,等.改进的萤火虫算法求解阻塞流水线调度问题[J].智能系统学报,2013,8(01):33.[doi:10.3969/j.issn.1673-4785.201205012]
 GUO Liping,LI Xiangtao,GU Wenxiang,et al.An improved firefly algorithm for the blocking flow shop scheduling problem[J].CAAI Transactions on Intelligent Systems,2013,8(05):33.[doi:10.3969/j.issn.1673-4785.201205012]
[2]莫愿斌,马彦追,郑巧燕,等.单纯形法的改进萤火虫算法及其在非线性方程组求解中的应用[J].智能系统学报,2014,9(06):747.[doi:10.3969/j.issn.1673-4785.201309075]
 MO Yuanbin,MA Yanzhui,ZHENG Qiaoyan,et al.Improved firefly algorithm based on simplex method and its application in solving non-linear equation groups[J].CAAI Transactions on Intelligent Systems,2014,9(05):747.[doi:10.3969/j.issn.1673-4785.201309075]
[3]朱书伟,周治平,张道文.融合并行混沌萤火虫算法的K-调和均值聚类[J].智能系统学报,2015,10(6):872.[doi:10.11992/tis.201505043]
 ZHU Shuwei,ZHOU Zhiping,ZHANG Daowen.K-harmonic means clustering merged with parallel chaotic firefly algorithm[J].CAAI Transactions on Intelligent Systems,2015,10(05):872.[doi:10.11992/tis.201505043]
[4]贾鹤鸣,彭晓旭,邢致恺,等.改进萤火虫优化算法的Renyi熵污油图像分割[J].智能系统学报,2020,15(2):367.[doi:10.11992/tis.201809002]
 JIA Heming,PENG Xiaoxu,XING Zhikai,et al.Renyi entropy based on improved firefly optimization algorithm for image segmentation of waste oil[J].CAAI Transactions on Intelligent Systems,2020,15(05):367.[doi:10.11992/tis.201809002]

备注/Memo

备注/Memo:
收稿日期:2017-06-07。
基金项目:甘肃省科技计划资助项目(1506RJZA130);甘肃省高等学校科研项目(2014B-018).
作者简介:魏伟一,男,1976年生,博士,副教授,CCF会员,主要研究方向为智能信息处理、数字图像处理;文雅宏,男,1993年生,硕士研究生,主要研究方向为数字图像处理、智能计算。
通讯作者:文雅宏.E-mail:wwyahong@126.com
更新日期/Last Update: 2017-10-25