[1]屠传运,陈韬伟,余益民,等.膜系统下的一种多目标优化算法[J].智能系统学报,2017,12(05):678-683.[doi:10.11992/tis.201706013]
 TU Chuanyun,CHEN Taowei,YU Yimin,et al.Multi-objective optimization algorithm based on membrane system[J].CAAI Transactions on Intelligent Systems,2017,12(05):678-683.[doi:10.11992/tis.201706013]
点击复制

膜系统下的一种多目标优化算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年05期
页码:
678-683
栏目:
出版日期:
2017-10-25

文章信息/Info

Title:
Multi-objective optimization algorithm based on membrane system
作者:
屠传运 陈韬伟 余益民 赵昆
云南财经大学 信息学院, 云南 昆明 650221
Author(s):
TU Chuanyun CHEN Taowei YU Yimin ZHAO Kun
College of Information, Yunnan University of Finance and Economics, Kunming 650221, China
关键词:
膜计算多目标优化遗传算法外部档案集非支配排序拥挤距离非支配解集Pareto前沿
Keywords:
membrane computingmulti-objective optimizationgenetic algorithmexternal archive setnon-dominated sortingcrowding distancenon-dominated solution setPareto front
分类号:
TP301
DOI:
10.11992/tis.201706013
摘要:
提出一种基于膜优化理论的多目标优化算法,该算法受膜计算的启发,结合膜结构、多重集和反应规则来求解多目标优化问题。为了增强算法的适应能力,采用了遗传算法中的交叉与变异机制,同时在膜中引入外部档案集,并采用非支配排序和拥挤距离方法对外部档案集进行更新操作来提高搜索解的多样性。仿真实验采用标准的KUR和ZDT系列多目标问题对所提出的算法进行测试,通过该算法得出的非支配解集能够较好地逼近真实的Pareto前沿,说明所提算法在求解多目标优化问题上具有可行性和有效性。
Abstract:
In this paper, we propose a multi-objective optimization algorithm based on the theory of membrane optimization. Inspired by membrane computing, this algorithm combines membrane structure, multiple sets, and reaction rules to solve multi-objective optimization problems. We employ the crossover and mutation mechanism in this genetic algorithm to enhance its adaptability. We also introduce an external archive set into the membrane and design a non-dominated sorting and crowding distance method to improve the diversity of the global search solution and thereby update the introduced archive. We used multi-objective problems including KUR and ZDT to evaluate the performance of our proposed algorithm. Our results show that the non-dominated solution set derived from the proposed algorithm can better approach the real Pareto front, which confirms that the proposed algorithm is feasible and effective in solving multi-objective optimization problems.

参考文献/References:

[1] FONSECA C M, FLEMING P J. Genetic algorithms for multi-objective optimization:formulation, discussion and generalization[C]//The 5th International Conference on Genetic Algorithms. San Mateo,CA, USA, 1993:416-423.
[2] SRINIVAS N, DEB K. Multi-objective optimization using non-dominated sorting in genetic algorithms[J]. Evolutionary computation, 1994, 2(3):221-248.
[3] HORN J, NAFPLIOTIS N, GOLDBERG D E. A niched pareto genetic algorithm for multi-objective optimization[C]//Proceedings of the first IEEE Conference on Evolutionary Computation. Orlando, FL, USA, 1994:82-87.
[4] ZITZLER E, THIELE L. Multi-objective evolutionary algorithms:a comparative case study and the strength Pareto approach[J]. IEEE trans. on evolutionary computation, 1999, 3(4):257-271.
[5] MARK ERICKSON A M, HORN J. The niched pareto genetic algorithm 2 applied to the design of groundwater remediation systems[J]. Lecture notes in computer science, 2001, 1993:681-695.
[6] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J]. IEEE trans. on evolutionary computation, 2002, 6(2):182-197.
[7] PAUN G, ROZENBERG G. A guide to membrane computing[J]. Theoretical computer science, 2002, 287(1):73-100.
[8] ZAHARIE D, CIOBANU G. Distributed evolutionary algorithms inspired by membranes in solving continuous optimization problems[J]. Lecture notes in computer science, 2009, 4361:536-553.
[9] LIU C, HAN M, WANG X Z. A multi-objective evolutionary algorithm based on membrane systems[C]//Fourth International Workshop on Advanced Computational Intelligence. Wuhan, China, 2011:103-109.
[10] ZHANG G, CHENG J, GHEORGHE M, et al. A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems[J]. Applied soft computing, 2013, 13(3):1528-1542.
[11] 韩敏, 刘闯, 邢军. 一种基于膜系统理论的多目标演算法[J]. 自动化学报, 2014, 40(3):431-438.HAN Min, LIU Chuang, XING Jun. A multi-objective evolutionary algorithm based on membrane system theory[J]. Acta automatica sinica, 2014, 40(3):431-438.
[12] PAUN G, ROZENBERG G, SALOMAA A. The Oxford handbook of membrane computing[M]. Oxford:Oxford University Press, 2010.
[13] 张葛祥, 潘林强. 自然计算的新分支——膜计算[J]. 计算机学报, 2010, 33(2):208-214.ZHANG Gexiang, PAN Linqiang. A survey of membrane computing as a new branch of natural computing[J]. Chinese journal of computers, 2010, 33(2):208-214.
[14] 张葛祥, 程吉祥,王涛,等. 膜计算:理论与应用[M]. 北京:科学出版社, 2015.
[15] 张玉良. 改进粒子群优化算法在图像矢量量化中的应用研究[D]. 天津:天津工业大学, 2013.ZHANG Yuliang. Application of improved particle swarm optimization algorithm in image vector quantization[D]. Tianjin:Tianjin Polytechnic University, 2013.
[16] 周明. 遗传算法原理及应用[M]. 北京:国防工业出版社, 1999.
[17] 李俊. 基于膜计算模型的多目标优化算法研究[D]. 合肥:安徽大学, 2016.LI Jun. Study on Multi-objective Optimization Algorithm Based on Membrane Computing Model[D]. Hefei:Anhui University, 2016.
[18] 黄席越, 张著洪, 何传江,等. 现代智能算法理论及应用[M]. 北京:科学出版社, 2005.
[19] JU Y, ZHANG S, DING N, et al. Complex network clustering by a multi-objective evolutionary algorithm based on decomposition and membrane structure[J]. Scientific reports, 2016, 6:33870.
[20] ZHANG G, LI Y, GHEORGHE M. A multi-objective membrane algorithm for knapsack problems[C]//IEEE Fifth International Conference on Bio-Inspired Computing:Theories and Applications. Gwalior, India, 2012:604-609.

相似文献/References:

[1]王 艳,曾建潮.多目标微粒群优化算法综述[J].智能系统学报,2010,5(05):377.[doi:10.3969/j.issn.1673-4785.2010.05.001]
 WANG Yan,ZENG Jian-chao.A survey of a multiobjective particle swarm optimization algorithm[J].CAAI Transactions on Intelligent Systems,2010,5(05):377.[doi:10.3969/j.issn.1673-4785.2010.05.001]
[2]陶新民,徐鹏,刘福荣,等.组合分布估计和差分进化的多目标优化算法[J].智能系统学报,2013,8(01):39.[doi:10.3969/j.issn.1673-4785.201208035]
 TAO Xinmin,XU Peng,LIU Furong,et al.Multi objective optimization algorithm composed of estimation of distribution and differential evolution[J].CAAI Transactions on Intelligent Systems,2013,8(05):39.[doi:10.3969/j.issn.1673-4785.201208035]
[3]秦全德,程适,李丽,等.人工蜂群算法研究综述[J].智能系统学报,2014,9(02):127.[doi:10.3969/j.issn.1673-4785.201309064]
 QIN Quande,CHENG Shi,LI Li,et al.Artificial bee colony algorithm: a survey[J].CAAI Transactions on Intelligent Systems,2014,9(05):127.[doi:10.3969/j.issn.1673-4785.201309064]
[4]张伟,乔俊飞.神经网络的污水处理过程多目标优化控制方法[J].智能系统学报,2016,11(5):594.[doi:10.11992/tis.201512022]
 ZHANG Wei,QIAO Junfei.Multi-objective optimization control for wastewatertreatment processing based on neural network[J].CAAI Transactions on Intelligent Systems,2016,11(05):594.[doi:10.11992/tis.201512022]
[5]孟勤超,杨翠丽,乔俊飞.基于改进SPEA2算法的给水管网多目标优化设计[J].智能系统学报,2018,13(01):118.[doi:10.11992/tis.201701012]
 MENG Qinchao,YANG Cuili,QIAO Junfei.Multi-objective optimization design of water distribution systems based on improved SPEA2 algorithm[J].CAAI Transactions on Intelligent Systems,2018,13(05):118.[doi:10.11992/tis.201701012]
[6]林燕清,傅仰耿.基于NSGA-II的扩展置信规则库激活规则多目标优化方法[J].智能系统学报,2018,13(03):422.[doi:10.11992/tis.201710012]
 LIN Yanqing,FU Yanggeng.NSGA-II-based EBRB rules activation multi-objective optimization[J].CAAI Transactions on Intelligent Systems,2018,13(05):422.[doi:10.11992/tis.201710012]
[7]柳强,焦国帅.基于Kriging模型和NSGA-Ⅱ的航空发动机管路卡箍布局优化[J].智能系统学报,2019,14(02):281.[doi:10.11992/tis.201709044]
 LIU Qiang,JIAO Guoshuai.Layout optimization of aero-engine pipe clamps based on Kriging model and NSGA-Ⅱ[J].CAAI Transactions on Intelligent Systems,2019,14(05):281.[doi:10.11992/tis.201709044]
[8]钱小宇,葛洪伟,蔡明.基于目标空间分解和连续变异的多目标粒子群算法[J].智能系统学报,2019,14(03):464.[doi:10.11992/tis.201711015]
 QIAN Xiaoyu,GE Hongwei,CAI Ming.Decomposition and continuous mutation-based multi-objective particle swarm optimization[J].CAAI Transactions on Intelligent Systems,2019,14(05):464.[doi:10.11992/tis.201711015]
[9]林锦,胡家琛,刘莞玲,等.利用MISA多目标优化的置信规则库分类算法[J].智能系统学报,2019,14(05):982.[doi:10.11992/tis.201809022]
 LIN Jin,HU Jiachen,LIU Wanling,et al.Belief rule base classification algorithm using MISA multi-objective optimization[J].CAAI Transactions on Intelligent Systems,2019,14(05):982.[doi:10.11992/tis.201809022]

备注/Memo

备注/Memo:
收稿日期:2017-06-06。
基金项目:国家自然科学基金项目(61461051,71462036);云南省教育厅一般项目(2015Y278).
作者简介:屠传运,男,1992年生,硕士研究生,主要研究方向为多目标优化、膜计算;陈韬伟,男,1972年生,副教授,博士,主要研究方向为智能信息处理、雷达信号处理及电子商务。主持并参与多项国家级课题,发表学术论文多篇,其中被SCI、EI检索10余篇;余益民,男,1968年生,副教授,博士,主要研究方向为跨境电子商务、能源互联网及数据挖掘技术。主持参与多项国家级课题,发表学术论文30余篇,被SCI、EI检索10余篇。
通讯作者:陈韬伟.E-mail:cctw33@126.com
更新日期/Last Update: 2017-10-25