[1]李亚鸽,杨宏志,徐久成.基于不完备信息系统的三角模糊数决策粗糙集[J].智能系统学报,2016,11(4):449-458.[doi:10.11992/tis.201606016]
 LI Yage,YANG Hongzhi,XU Jiucheng.Triangular fuzzy number decision-theoretic rough sets under incomplete information systems[J].CAAI Transactions on Intelligent Systems,2016,11(4):449-458.[doi:10.11992/tis.201606016]
点击复制

基于不完备信息系统的三角模糊数决策粗糙集(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年4期
页码:
449-458
栏目:
出版日期:
2016-07-25

文章信息/Info

Title:
Triangular fuzzy number decision-theoretic rough sets under incomplete information systems
作者:
李亚鸽14 杨宏志2 徐久成3
1. 郑州大学 数学与统计学院, 河南 郑州 450001;
2. 河南财经政法大学, 河南 郑州 450046;
3. 河南师范大学 计算机与信息工程学院, 河南 新乡 453007;
4. 新乡学院 数学与信息科学学院, 河南 新乡 453007
Author(s):
LI Yage14 YANG Hongzhi2 XU Jiucheng3
1. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China;
2. Henan University of Economics and Law, Zhengzhou, Zhengzhou 450046, China;
3. College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China;
4. Department of Mathematics and Information Science, Xinxiang University, Xinxiang 453007, China
关键词:
不完备信息系统区间值三角模糊数决策粗糙集
Keywords:
incomplete information systeminterval valuetriangular fuzzy numberdecision-theoretic rough sets
分类号:
TP18
DOI:
10.11992/tis.201606016
摘要:
在不完备信息系统中,针对用区间值表示一个未知参量时,整个区间内取值机会被认为是均等的,得到的结果可能会产生过大误差的问题,将三角模糊数引入到决策粗糙集中,提出了一种基于不完备信息系统的三角模糊数决策粗糙集。首先,定义了一种描述不完备信息的相似关系;然后,针对不完备信息系统中的缺失值,利用三角模糊数来获取损失函数,构建了三角模糊数决策粗糙集模型;实例表明,本文提出的方法不仅能够弥补用区间数表示的不足,而且可以突出可能性最大的主值,从而减少分类误差。
Abstract:
Aiming at the problems that when using an interval value to represent an unknown parameter in an incomplete information system, the opportunity to obtain the value over the whole interval is considered to be equal, but the result may cause an over-large error. In order to solve this problem, a triangular fuzzy number was introduced into decision-theoretic rough sets, and a triangular fuzzy decision-theoretic rough set under incomplete information systems is proposed. Firstly, a new similarity relation was defined to describe incomplete information systems. Then, in view of the missing values, a model of triangular fuzzy number decision-theoretic rough sets was constructed to obtain the loss function. Finally, examples show that the proposed method not only makes up for deficiency in representation of the interval value, but also highlights the main value most likely to reduce the classification error.

参考文献/References:

[1] 王国胤. Rough集理论在不完备信息系统中的扩充[J]. 计算机研究与发展, 2002, 39(10):1238-1243. WANG Guoyin. Extension of rough set under incomplete information systems[J]. Journal of computer research and development, 2002, 39(10):1238-1243.
[2] GRZYMALA-BUSSE J W. On the unknown attribute values in learning from examples[C]//RAS Z W, ZEMANKOVA M. Proceedings of the 6th International Symposium on Methodologies for Intelligent Systems (ISMIS-91). Berlin, Heidelberg:Springer-Verlag, 1991, 542:368-377.
[3] KRYSZKIEWICZ M. Rough set approach to incomplete information systems[J]. Information sciences, 1988, 112(1/2/3/4):39-49.
[4] 杨习贝, 杨静宇, 於东军, 等. 不完备信息系统中的可变精度分类粗糙集模型[J]. 系统工程理论与实践, 2008, 28(5):116-121. YANG Xibei, YANG Jingyu, YU Dongjun, et al. Rough set model based on variable parameter classification in incomplete information systems[J]. Systems engineering-theory & practice, 2008, 28(5):116-121.
[5] GRZYMALA-BUSSE J W, WANG A Y. Modified algorithms LEM1 and LEM2 for rule induction from data with missing attribute values[C]//Proceeding of the Fifth International Workshop on Rough Sets and Soft Computing (RSSC’97) at the Third Joint Conference on Information Sciences (JCIS’97). Research Triangle Park, NC, 1997:69-72.
[6] STEFANOWSKI J, TSOUKIàS A. Incomplete information tables and rough classification[J]. Computational intelligence, 2001, 17(3):545-566.
[7] YAO Y Y, WONG S K M. A decision theoretic framework for approximating concepts[J]. International journal of man-machine studies, 1922, 37(6):793-809.
[8] 贾修一, 商琳, 陈家骏. 决策风险最小化属性约简[J]. 计算机科学与探索, 2011, 5(2):155-160. JIA Xiuyi, SHANG Lin, CHEN Jiajun. Attribute reduction based on minimum decision cost[J]. Journal of frontiers of computer science & technology, 2011, 5(2):155-160.
[9] 于洪, 王国胤, 姚一豫. 决策粗糙集理论研究现状与展望[J]. 计算机学报, 2015, 38(8):1628-1639. YU Hong, WANG Guoyin, YAO Yiyu. Current research and future perspectives on decision-theoretic rough sets[J]. Chinese journal of computers, 2015, 38(8):1628-1639.
[10] LI Huaxiong, ZHOU Xianzhong. Risk decision making based on decision-theoretic rough set:a three-way view decision model[J]. International journal of computational intelligence systems, 2011, 4(1):1-11.
[11] 衷锦仪, 叶东毅. 基于模糊数风险最小化的拓展决策粗糙集模型[J]. 计算机科学, 2014, 41(3):50-54, 75. ZHONG Jinyi, YE Dongyi. Extended decision-theoretic rough set models based on fuzzy minimum cost[J]. Computer science, 2014, 41(3):50-54.
[12] LIU Dun, LI Huaxiong, ZHOU Xianzhong. Two decades’research on decision-theoretic rough sets[C]//Proceeding of the 9th IEEE International Conference on Cognitive Informatics. Beijing:IEEE, 2010:968-973.
[13] 李华雄, 刘盾, 周献中. 决策粗糙集模型研究综述[J]. 重庆邮电大学学报:自然科学版, 2010, 22(5):624-630. LI Huaxiong, LIU Dun, ZHOU Xianzhong. Rewiew on decision-theoretic rough set model[J]. Journal of Chongqing university of posts and telecommunications:natural science edition, 2010, 22(5):624-630.
[14] 李华雄, 周献中, 李天瑞, 等. 决策粗糙集理论及其研究进展[M]. 北京:科学出版社, 2011.LI Huaxiong, ZHOU Xianzhong, LI Tianrui, et al. Decision-theoretic rough sets theory and recent research[M]. Beijing:Science Press, 2011.
[15] 刘盾, 姚一豫, 李天瑞. 三枝决策粗糙集[J]. 计算机科学, 2011, 38(1):246-250. LIU Dun, YAO Yiyu, LI Tianrui. Three-way decision-theoretic rough sets[J]. Computer science, 2011, 38(1):246-250.
[16] LIANG Decui, PEDRYCZ W, LIU Dun, et al. Three-way decisions based on decision-theoretic rough sets under linguistic assessment with the aid of group decision making[J]. Applied soft computing, 2015, 29:256-269.
[17] 刘盾, 李天瑞, 李华雄. 区间决策粗糙集[J]. 计算机科学, 2012, 39(7):178-181, 214. LIU Dun, LI Tianrui, LI Huaxiong. Interval-valued decision-theoretic rough sets[J]. Computer science, 2012, 39(7):178-181, 214.
[18] 马兴斌, 鞠恒荣, 杨习贝, 等. 不完备信息系统中的多重代价决策粗糙集[J]. 南京大学学报:自然科学版, 2015, 51(2):335-342. MA Xingbin, JU Hengrong, YANG Xibei, et al. Multi-cost based decision-theoretic rough sets in incomplete information systems[J]. Journal of Nanjing university:natural sciences, 2015, 51(2):335-342.
[19] LIU Dun, LIANG Decui, WANG Changchun. A novel three-way decision model based on incomplete information system[J]. Knowledge-based systems, 2016, 91:32-45.
[20] YAO Y Y, WONG S K M. A decision theoretic framework for approximating concepts[J]. International journal of man-machine studies, 1992, 37(6):793-809.
[21] YAO Yiyu. Decision-theoretic rough set models[M]//YAO Jingtao, LINGRAS P, WU Weizhi, et al. Rough Sets and Knowledge Technology. Berlin Heidelberg:Springer, 2007, 4481:1-12.
[22] 唐国春. 模糊排序中的面积模糊度[J]. 上海第二工业大学学报, 1999, 16(2):48-55. TANG Guochun. The area degree of fuzziness in fuzzy scheduling[J]. Journal of Shanghai second polytechnic university, 1999, 16(2):48-55.
[23] KRYSZKIEWICZ M. Rough set approach to incomplete information systems[J]. Information sciences, 1998, 112(1/2/3/4):39-49.
[24] KAUFMAN A, GUPTA M M. Introduction to fuzzy arithmetic:theory and application[M]. New York:Van Nostrand Reinhold, 1985.
[25] 陈圣兵, 李龙澍, 纪霞, 等. 不完备信息系统中基于集对相似度的粗集模型[J]. 计算机科学, 2010, 37(7):186-190. CHEN Shengbing, LI Longshu, JI Xia, et al. Extension of rough set model based on SPA similarity degree in incomplete information systems[J]. Computer science, 2010, 37(7):186-190.
[26] KUMAR A, SINGH P, KAUR A, et al. A new approach for ranking of L-R type generalized fuzzy numbers[J]. Expert systems with applications, 2011, 38(9):10906-10910.
[27] YAO Yiyu. The superiority of three-way decisions in probabilistic rough set models[J]. Information sciences, 2011, 181(6):1080-1096.

相似文献/References:

[1]鞠恒荣,马兴斌,杨习贝,等.不完备信息系统中测试代价敏感的可变精度分类粗糙集[J].智能系统学报,2014,9(02):219.[doi:10.3969/j.issn.1673-4785.201307010]
 JU Hengrong,MA Xingbin,YANG Xibei,et al.Test-cost-sensitive based variable precision classification rough set in incomplete information system[J].CAAI Transactions on Intelligent Systems,2014,9(4):219.[doi:10.3969/j.issn.1673-4785.201307010]
[2]史德容,徐伟华.区间值模糊决策序信息系统的部分一致约简[J].智能系统学报,2016,11(4):469.[doi:10.11992/tis.201606013]
 SHI Derong,XU Weihua.Partially consistent reduction in interval-valued fuzzy ordered decision information system[J].CAAI Transactions on Intelligent Systems,2016,11(4):469.[doi:10.11992/tis.201606013]
[3]王映龙,曾淇,钱文彬,等.变精度下不完备邻域决策系统的属性约简算法[J].智能系统学报,2017,12(03):386.[doi:10.11992/tis.201705027]
 WANG Yinglong,ZENG Qi,QIAN Wenbin,et al.Attribute reduction algorithm of the incomplete neighborhood decision system with variable precision[J].CAAI Transactions on Intelligent Systems,2017,12(4):386.[doi:10.11992/tis.201705027]
[4]尹继亮,张楠,童向荣,等.不协调区间值决策系统的最大分布约简[J].智能系统学报,2018,13(03):469.[doi:10.11992/tis.201710011]
 YIN Jiliang,ZHANG Nan,TONG Xiangrong,et al.Maximum distribution reduction in inconsistent interval-valued decision systems[J].CAAI Transactions on Intelligent Systems,2018,13(4):469.[doi:10.11992/tis.201710011]

备注/Memo

备注/Memo:
收稿日期:2016-06-03。
基金项目:国家自然科学基金项目(61370169,61402153);河南省科技攻关重点项目(142102210056,162102210261);河南省高等学校重点科研项目(16A520057).
作者简介:李亚鸽,女,1990年生,硕士研究生,主要研究方向为粗糙集、粒计算、三支决策;杨宏志,男,1962年生,教授,博士,主要研究方向为粗糙集、概念格、粒计算;杨宏志教授长期从事应用数学的教学与研究工作,先后发表学术论文30余篇,出版著作2部,承担并完成省级项目8项;徐久成,男,1964年生,教授,博士生导师,主要研究方向为数据挖掘、粒计算与知识获取、生物信息学等。发表学术论文100余篇,其中被SCI收录14篇,被EI收录30余篇;出版专著1部,主编国家"十一.五"、"十二.五"规划统编教材3部。获河南省自然科学优秀学术论文一等奖3项、河南省高等教育省级教学成果一等奖2项,河南省教育厅科技成果一等奖1项。
通讯作者:李亚鸽.E-mail:liyagezzu@163.com.
更新日期/Last Update: 1900-01-01