[1]夏小云,周育人.蚁群优化算法的理论研究进展[J].智能系统学报编辑部,2016,11(1):27-36.[doi:10.11992/tis.201510002]
 XIA Xiaoyun,ZHOU Yuren.Advances in theoretical research of ant colony optimization[J].CAAI Transactions on Intelligent Systems,2016,11(1):27-36.[doi:10.11992/tis.201510002]
点击复制

蚁群优化算法的理论研究进展

参考文献/References:
[1] DORIGO M, MANIEZZO V, COLORNI A. Theantsystem:An autocatalytic optimizing process Technical Report 91-016[R]. Milan, Italy:Dipartimento di Elettronica, Politecnico di Milano, 1991.
[2] DORIGO M, STUTZLE T. 蚁群优化[M]. 张军, 胡晓敏, 罗旭耀, 译. 北京:清华大学出版社, 2007:110-246.
[3] DORIGO M, BLUM C. Ant colony optimization theory:a survey[J]. Theoretical computer science, 2005, 344(2-3):243-278.
[4] 段海滨, 王道波, 于秀芬. 蚁群算法的研究现状及其展望[J]. 中国工程科学, 2007, 9(2):98-102.DUAN Haibin, WANG Daobo, YU Xiufen. Ant colony algorithm:survey and prospect[J]. Engineering science, 2007, 9(2):98-102.
[5] NOCEDAL J, WRIGHT S J. Numerical optimization[M]. New York:Springer, 2000.
[6] VAZIRANI V V. Approximation algorithms[M]. Berlin Heidelberg:Springer, 2003.
[7] GAREY M R, JOHNSON D S. Computers and Intractability-A Guide to the Theory of NP-Completeness[M]. New York:Freeman W H and Company, 1979.
[8] COLORNI A, DORIGO M, MANIEZZO V. An investigation of some properties of an "Ant algorithm"[C]//Proceedings of Parallel Problem Solving from Nature II (PPSN 92). Brussels, Belgium, 1992:515-526.
[9] STVTZLE T, HOOS H H. MAX-MIN ant system[J]. Future generation computer systems, 2000, 16(8):889-914.
[10] GUTJAHR W J. Mathematical runtime analysis of ACO algorithms:survey on an emerging issue[J]. Swarm intelligence, 2007, 1(1):59-79.
[11] DROSTE S, JANSEN T, WEGENER I. On the analysis of the (1+1) evolutionary algorithm[J]. Theoretical computer science, 2002, 276(1-2):51-81.
[12] WEGENER I, WITT C. On the analysis of a simple evolutionary algorithm on quadratic pseudo-boolean functions[J]. Journal of discrete algorithms, 2005, 3(1):61-78.
[13] WEGENER I. Towards a theory of randomized search heuristics[M]//ROVAN B, VOJTÁ? P. Mathematical Foundations of computer science 2003. Berlin Heidelberg:Springer, 2003:125-141.
[14] WEGENER I. Methods for the analysis of evolutionary algorithms on pseudo-boolean functions[M]//Evolutionary Optimization. Dordrecht:Kluwer Academic Publishers, 2002, 48:349-369.
[15] BEYER H G, SCHWEFEL H P, WEGENER I. How to analyse evolutionary algorithms[J]. Theoretical computer science, 2002, 287(1):101-130.
[16] HE J, YAO X. Towards an analytic framework for analysing the computation time of evolutionary algorithms[J]. Artificial intelligence, 2003, 145(1-2):59-97.
[17] HE J, YAO X. Drift analysis and average time complexity of evolutionary algorithms[J]. Artificial intelligence, 2001, 127(1):57-85.
[18] HE J, YAO X. From an individual to a population:an analysis of the first hitting time of population-based evolutionary algorithms[J]. IEEE transactions on evolutionary computation, 2002, 6(5):495-511.
[19] GUTJAHR W J. A graph-based ant system and its convergence[J]. Future generation computer systems, 2000, 16(8):873-888.
[20] STVTZLE T, DORIGO M. A short convergence proof for a class of ACO algorithms[J]. IEEE transactions on evolutionary computation, 2002, 6(4):358-365.
[21] GUTJAHR W J. On the finite-time dynamics of ant colony optimization[J]. Methodology and computing in applied probability, 2006, 8(1):105-133.
[22] 黄翰, 郝志峰, 吴春国,等. 蚁群算法的收敛速度分析[J]. 计算机学报, 2007, 30(8):1344-1353. HUANG Han, HAO Zhifeng, WU Chunguo, et al. The convergence speed of ant colony optimization[J]. Chinese journal of computers, 2007, 30(8):1344-1353.
[23] BIRATTARI M, Dicaro G, DORIGO M. Toward the formal foundation of ant programming[M]//DORIGO M, DI CARO G, SAMPELS M. Ant Algorithms. Berlin Heidelberg:Springer-Verlag, 2002, 2463:188-201.
[24] MEULEAU N, DORIGO M. Ant colony optimization and stochastic gradient descent[J]. Artificial life, 2002, 8(2):103-121.
[25] ZLOCHIN M, BIRATTARI M, MEULEAU N, et al. Model-based search for combinatorial optimization:a critical survey[J]. Annals of operations research, 2004, 131(1-4):373-395.
[26] GUTJAHR W J. A generalized convergence result for the graph-based ant system metaheuristic[J]. Probability in the engineering and informational sciences, 2003, 17(4):545-569.
[27] NEUMANN F, WITT C. Runtime analysis of a simple ant colony optimization algorithm[C]//Proceedings of the 17th International Symposium on Algorithms, ISAAC 2006. Kolkata, India, 2006, 4288:618-627.
[28] NEUMANN F, SUDHOLT D, Wit C. Comparing variants of MMAS ACO algorithms on pseudo-Boolean functions[C]//Proceedings of International Workshop, SLS 2007. Brussels, Belgium, 2007:61-75.
[29] NEUMANN F, WITT C. Runtime analysis of a simple ant colony optimization algorithm[J]. Algorithmica, 2009, 54(2):243-255.
[30] GUTJAHR W J. First steps to the runtime complexity analysis of ant colony optimization[J]. Computers & operations research, 2008, 35(9):2711-2727.
[31] DOERR B, JOHANNSEN D. Refined runtime analysis of a basic ant colony optimization algorithm[C]//Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007). Singapore, 2007:501-507.
[32] DOERR B, NEUMANN F, SUDHOLT D, et al. On the runtime analysis of the 1-ANT ACO algorithm[C]//Proceedings of Genetic and Evolutionary Computation Conference (GECCO’2007). London, England, 2007:33-40.
[33] DOERR B, NEUMANN F, SUDHOL D, et al. Runtime analysis of the 1-ANT ant colony optimizer[J]. Theoretical computer science, 2011, 412(17):1629-1644.
[34] GUTJAHR W J, SEBASTIANI G. Runtime analysis of ant colony optimization with best-so-far reinforcement[J]. Methodology and computing in applied probability, 2008, 10(3):409-433.
[35] NEUMANN F, SUDHOLT D, WITT C. Analysis of different MMAS ACO algorithms on unimodal functions and plateaus[J]. Swarm intelligence, 2009, 3(1):35-68.
[36] NEUMANN F, SUDHOLT D, WITT C. A few ants are enough:ACO with Iteration-best update[C]//Proceedings of Genetic and Evolutionary Computation Conference (GECCO’2010). Portland, USA, 2010:63-70.
[37] KÖTZING T, NEUMANN F, SUDHOLT D, et al. Simple Max-Min ant systems and the optimization of linear pseudo-Boolean functions[C]//Proceedings of the 11th Work-shop on Foundations of Genetic Algorithms (FOGA 2011). New York, NY, USA, 2011:209-218.
[38] NEUMANN F, SUDHOLT D, WITT C. Rigorous analyses for the combination of ant colony optimization and local search[C]//Proceedings of the 6th International Conference on Ant Colony Optimization and Swarm Intelligence (ANTS08). Brussels, Belgium, 2008:132-143.
[39] NEUMANN F, WITT C. Ant colony optimization and the minimum spanning tree problem[J]. Theoretical computer science, 2010, 411(25):2406-2413.
[40] KÖTZING T, LEHRE P K, OLIVETO P S, et al. Ant colony optimization and the minimum cut problem[C]//Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation Conference (GECCO’10). New York, NY, USA, 2010:1393-1400.
[41] ATTIRATANASUNTHRON N, FAKCHAROENPHOL J. A running time analysis of an ant colony optimization algorithm for shortest paths in directed acyclic graphs[J]. Information processing letters, 2008, 105(3):88-92.
[42] SUDHOLT D, THYSSEN C. Running time analysis of Ant Colony Optimization for shortest path problems[J]. Journal of discrete algorithms, 2012, 10:165-180.
[43] SUDHOLT D, THYSSEN C. A simple ant colony optimizer for stochastic shortest path problems[J]. Algorithmica, 2012, 64(4):643-672.
[44] LISSOVOI A, WITT C. Runtime analysis of ant colony optimization on dynamic shortest path problems[J]. Theoretical computer science, 2015, 561:73-85.
[45] ZHOU Y R. Runtime analysis of an ant colony optimization algorithm for TSP instances[J]. IEEE transactions on evolutionary computation, 2009, 13(5):1083-1092.
[46] KÖTZING T, NEUMANN F, RÖGLIN H, et al. Theoretical analysis of two ACO approaches for the traveling sales man problem[J]. Swarm intelligence, 2012, 6(1):1-21.
[47] LISSOVOI A, WITT C. MMAS versus population-based EA on a family of dynamic fitness functions[J]. Algorithmica, 2015, doi:10.1007/s00453-015-9975-z.
相似文献/References:
[1]裴小兵,张春花.应用改进区块遗传算法求解置换流水车间调度问题[J].智能系统学报编辑部,2019,14(3):541.[doi:10.11992/tis.201801041]
 PEI Xiaobing,ZHANG Chunhua.An improved puzzle-based genetic algorithm for solving permutation flow-shop scheduling problems[J].CAAI Transactions on Intelligent Systems,2019,14():541.[doi:10.11992/tis.201801041]

备注/Memo

收稿日期:2015-10-07;改回日期:。
基金项目:国家自然科学基金资助项目(61170081,61472143);江西省自然科学基金资助项目(20151BAB217008).
作者简介:夏小云,男,1982年生,博士研究生,主要研究方向为计算智能与机器学习;周育人,男,1965年生,教授,博士生导师,博士,主要研究方向为计算智能、数据挖掘及社会网络。主持国家、省部级项目多项,发表学术论文50余篇。
通讯作者:周育人.E-mail:yrzhou@scut.edu.cn.

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134