[1]张永库,尹灵雪,孙劲光.基于改进的遗传算法的模糊聚类算法[J].智能系统学报编辑部,2015,10(04):627-635.[doi:10.3969/j.issn.1673-4785.201503033]
 ZHANG Yongku,YIN Lingxue,SUN Jinguang.Fuzzy clustering algorithm based on the improved genetic algorithm[J].CAAI Transactions on Intelligent Systems,2015,10(04):627-635.[doi:10.3969/j.issn.1673-4785.201503033]
点击复制

基于改进的遗传算法的模糊聚类算法(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年04期
页码:
627-635
栏目:
出版日期:
2015-08-25

文章信息/Info

Title:
Fuzzy clustering algorithm based on the improved genetic algorithm
作者:
张永库1 尹灵雪2 孙劲光1
1. 辽宁工程技术大学 电子与信息工程学院, 辽宁 葫芦岛 125105;
2. 辽宁工程技术大学 研究生学院, 辽宁 葫芦岛 125105
Author(s):
ZHANG Yongku1 YIN Lingxue2 SUN Jinguang1
1. College of Electronics and Information Engineering, Liaoning Technical University, Liaoning 125105, China;
2. Institute of Graduate, Liaoning Technical University, Liaoning 125105, China
关键词:
模糊C均值算法聚类分析遗传算法动态分析模糊聚类初始值避免早熟全局最优局部最优
Keywords:
fuzzy C-means clusteringcluster analysisgenetic algorithmdynamic analysisfuzzy clusteringinitial valuespremature contraction avoidanceglobal optimumlocal optimum
分类号:
TP18
DOI:
10.3969/j.issn.1673-4785.201503033
文献标志码:
A
摘要:
针对传统的模糊C均值聚类(fuzzy C-means clustering)算法容易陷入局部最优解,并且对初始值敏感的缺陷,提出一种基于改进的遗传算法的模糊聚类算法。该算法针对遗传算法的早熟问题提出一种改进的遗传算法,并将其应用于FCM算法,来寻找全局最优的聚类中心。实验表明,该算法与基于传统遗传算法的FCM算法相比,具有更强的寻优能力,更优的聚类效果。
Abstract:
The traditional fuzzy C-means(FCM) clustering algorithm is prone to fall into the solution of local optimum and is sensitive to initial value. Aiming at these drawbacks, a fuzzy C-means based on the improved genetic algorithm is presented. The improved genetic algorithm is employed to optimise the FCM algorithm, finding the cluster center of the global optimum. Finally, the experimental results show that compared with the traditional FCM, the proposed algorithm has stronger optimisation ability and better clustering effect.

参考文献/References:

[1] TAN Pangning, STEINBACH M, KUMAR V. 数据挖掘导论[M]. 北京: 人民邮电出版社, 2006: 298-320.
[2] GAO Yunguang, WANG Shicheng, LIU Shunbo. Automatic clustering based on GA-FCM for pattern recognition[C]//Computational Intelligence and Design. Changsha, China, 2009: 146-149.
[3] VIJAYACHITRA S, TAMILARASI A, KASTHURI N. Multiple input single output (MISO) process optimization using[C]//International Conference on Education Technology and Computer. Singapore, 2009: 248-252.
[4] LIU Suhua, HOU Huifang. A combination of mixture genetic algorithm and fuzzy c-means clustering[C]//IEEE International Symposium on IT in Medicine & Education. Ji’nan, China, 2009: 254-258.
[5] BELAHBIB F Z B, SOUAMI F. Genetic algorithm clustering for color image quantization[C]//2011 3rd European Workshop on Visual Information Processing. Paris, French, 2011: 83-87.
[6] BEZDEK J C, EHRLICH R, FULL W. FCM: the fuzzy c-means clustering algorithm[J]. Computers and Geosciences, 1984, 10(2/3): 191-203.
[7] LIU Zhide, CHEN Jiabin, SONG Chunlei. A new RBF neural network with GA-based fuzzy c-means clustering[C]//Chinese Control and Decision Conference. Guilin, China, 2009: 208-211.
[8] HOLLAND J H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence[M]. Cambridge: MIT Press, 1992: 95-110.
[9] WANG Jianxin. Reducing the overlap among hierarchical clusters with a GA-based approach[C]//2009 1st International Conference on Information Science and Engineering. Nanjing, China, 2009: 924-927.
[10] MENENDEZ H D, BARRERO D F, CAMACHO D. A multi-objective genetic graph-based clustering algorithm with memory optimization[C]//2013 IEEE Congress on Evolutionary Computation. Cancun, Mexico, 2013: 3174-3181.
[11] RAZIZADEH N, BADAMCHIZAEH M A, GHASEMPOUR M S G. A new GA based method for improving hybrid clustering[C]//2013 21st Iranian Conference on Electrical Engineering. Mashhad, Iran, 2013: 1-6.
[12] NGUYEN D D, NGO L T. Multiple kernel interval type-2 fuzzy c-means clustering[C]//IEEE International Conference on Fuzzy Systems (FUZZ). Hyderabad, India, 2013: 1-8.
[13] ARNALDO H A, BEDREGAL B R C. A new way to obtain the initial centroid clusters in fuzzy c-means algorithm[C]//2013 2nd Workshop-School on Theoretical Computer Science (WEIT). Rio Grande, Brazil, 2013: 139-144.
[14] NGUYEN D H M, WONG K P. Controlling diversity of evolutionary algorithms[C]//Proceedings of the 2nd International Conference on Machine Learning and Cybernetics. Guilin, China, 2003: 775-780.
[15] ZHU K Q. Population diversity in genetic algorithm for vehicle routing problem with time windows[C]//European Conference on Machine Learning. Pisa, Italy, 2004: 537-547.
[16] CHENG S S, CHAO Y H, WANG H M, et al. A prototypes-embedded genetic K-means algorithm[C]//18th International Conference on Pattern Recognition. Hong Kong, China, 2006: 724-727.
[17] REZAEE M R, LELIEVELDT B P F, REIBER J H C. A new cluster validity indexes for the fuzzy c-mean[J]. Pattern Recognition Letters, 1998, 19(3-4): 237-246.
[18] BANDYOPADHYAY S, MAULIK U. An evolutionary technique based on K-means algorithm for optimal clustering in RN[J]. Information Sciences, 2002, 146(1-4): 221-237.
[19] SABAU A S. Variable density based genetic clustering[C]//2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). Timisoara, Romania, 2012: 200-206.
[20] XIAO Huiming. Application in performance assessment of the clinical department in hospital based on fuzzy cluster and genetic algorithm[C]//2014 International Conference on Computational Intelligence and Communication Networks. Bhopal, India, 2014: 1057-1061.

相似文献/References:

[1]刘秀梅,赵克勤.基于联系数的不确定空情意图识别[J].智能系统学报编辑部,2012,7(05):450.
 LIU Xiumei,ZHAO Keqin.Inference method on intention with uncertain aerial information based on the connection number[J].CAAI Transactions on Intelligent Systems,2012,7(04):450.
[2]尹宁,刘富,张玉.采用最小误差阈值分割算法的基因芯片图像分析[J].智能系统学报编辑部,2013,8(01):28.[doi:10.3969/j.issn.1673-4785.201207015]
 YIN Ning,LIU Fu,ZHANG Yu.Image analysis of gene chip using minimum error threshold segmentation algorithm[J].CAAI Transactions on Intelligent Systems,2013,8(04):28.[doi:10.3969/j.issn.1673-4785.201207015]
[3]卿铭,孙晓梅.一种新的聚类有效性函数:模糊划分的模糊熵[J].智能系统学报编辑部,2015,10(01):75.[doi:10.3969/j.issn.1673-4785.201410004]
 QING Ming,SUN Xiaomei.A new clustering effectiveness function: fuzzy entropy of fuzzy partition[J].CAAI Transactions on Intelligent Systems,2015,10(04):75.[doi:10.3969/j.issn.1673-4785.201410004]
[4]王德文,孙志伟.一种基于内存计算的电力用户聚类分析方法[J].智能系统学报编辑部,2015,10(04):569.[doi:10.3969/j.issn.1673-4785.201411011]
 WANG Dewen,SUN Zhiwei.A method for cluster analysis of electric power consumers based on in-memory computing[J].CAAI Transactions on Intelligent Systems,2015,10(04):569.[doi:10.3969/j.issn.1673-4785.201411011]
[5]郑婷婷,桑小双,马斌斌.犹豫模糊集的α-截集及其应用[J].智能系统学报编辑部,2017,12(03):362.[doi:10.11992/tis.201704026]
 ZHENG Tingting,SANG Xiaoshuang,MA Binbin.α-cut sets of hesitant fuzzy sets and their applications[J].CAAI Transactions on Intelligent Systems,2017,12(04):362.[doi:10.11992/tis.201704026]
[6]冯冰,李绍滋.中医脉诊信号的无监督聚类分析研究[J].智能系统学报编辑部,2018,13(04):564.[doi:10.11992/tis.201703030]
 FENG Bing,LI Shaozi.Unsupervised clustering analysis of human-pulse signal in traditional Chinese medicine[J].CAAI Transactions on Intelligent Systems,2018,13(04):564.[doi:10.11992/tis.201703030]
[7]赵晓晓,周治平.结合稀疏表示与约束传递的半监督谱聚类算法[J].智能系统学报编辑部,2018,13(05):855.[doi:10.11992/tis.201703013]
 ZHAO Xiaoxiao,ZHOU Zhiping.A semi-supervised spectral clustering algorithm combined with sparse representation and constraint propagation[J].CAAI Transactions on Intelligent Systems,2018,13(04):855.[doi:10.11992/tis.201703013]
[8]秦海菲,杜军平.酒店在线评论数据的特征挖掘[J].智能系统学报编辑部,2018,13(06):1006.[doi:10.11992/tis.201806016]
 QIN Haifei,DU Junping.Feature mining based on online hotel review[J].CAAI Transactions on Intelligent Systems,2018,13(04):1006.[doi:10.11992/tis.201806016]
[9]储德润,周治平.公理化模糊共享近邻自适应谱聚类算法[J].智能系统学报编辑部,2019,14(05):897.[doi:10.11992/tis.201810002]
 CHU Derun,ZHOU Zhiping.Shared nearest neighbor adaptive spectral clustering algorithm based on axiomatic fuzzy set theory[J].CAAI Transactions on Intelligent Systems,2019,14(04):897.[doi:10.11992/tis.201810002]
[10]储德润,周治平.加权PageRank改进地标表示的自编码谱聚类算法[J].智能系统学报编辑部,2020,15(2):302.[doi:10.11992/tis.201904021]
 CHU Derun,ZHOU Zhiping.An autoencoder spectral clustering algorithm for improving landmark representation by weighted PageRank[J].CAAI Transactions on Intelligent Systems,2020,15(04):302.[doi:10.11992/tis.201904021]

备注/Memo

备注/Memo:
收稿日期:2015-03-18;改回日期:。
基金项目:国家自然科学基金资助项目(61172144);国家科技支撑计划资助项目(2013BAH12F02);辽宁省教育厅科学研究一般资助项目(L201432).
作者简介:张永库,男,1972年生,副教授,主要研究方向为图形图像和多媒体、数据处理和数据挖掘,先后主持和参加“唐钢集团庙沟铁矿管理信息系统”、“基于点模型的布尔运算和混合建模技术”、“义煤集团医疗保险管理系统”、“滑坡灾害远程智能监测系统”等10余项课题,获市科技进步一等奖1项、市科技进步二等奖4项、辽宁省教学成果一等奖1项;尹灵雪,女,1991年生,硕士研究生,主要研究方向为数据处理和数据挖掘;孙劲光,女,1962年生,教授,博士,主要研究方向为图形图像和多媒体、数据处理和数据挖掘。
通讯作者:尹灵雪.E-mail:ylx19910708@163.com.
更新日期/Last Update: 2015-08-28