[1]童莹.一种方向性的局部二值模式在人脸表情识别中的应用[J].智能系统学报,2015,10(03):422-428.[doi:10.3969/j.issn.1673-4785.201405016]
 TONG Ying.Local binary pattern based on the directions and its application in facial expression recognition[J].CAAI Transactions on Intelligent Systems,2015,10(03):422-428.[doi:10.3969/j.issn.1673-4785.201405016]
点击复制

一种方向性的局部二值模式在人脸表情识别中的应用(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年03期
页码:
422-428
栏目:
出版日期:
2015-06-25

文章信息/Info

Title:
Local binary pattern based on the directions and its application in facial expression recognition
作者:
童莹
南京工程学院 通信工程学院, 江苏 南京 211167
Author(s):
TONG Ying
Department of Communication Engineering, Nanjing Institute of Technology, Nanjing 211167, China
关键词:
人脸表情识别局部二值模式中心最近邻分类方向性局部二值模式Gabor:LDP
Keywords:
facial expression recognitionlocal binary pattern (LBP)central nearest neighbor classificationdirectional local binary pattern (DLBP)Gaborlocal directional pattern (LDP)
分类号:
TP391.41
DOI:
10.3969/j.issn.1673-4785.201405016
文献标志码:
A
摘要:
传统局部二值模式(LBP)算法应用在人脸表情识别中,不能准确描述眼睛、嘴巴、额头等表情特征区域在不同方向上的灰度变化趋势,识别效果不理想.本文改进传统局部二值模式的灰度比较关系,分别从水平、垂直以及对角3个方向对邻域像素的灰度变化进行二值编码,融合3个方向的特征,得到一种基于方向性的局部二值模式(DLBP).在JAFFE数据库和Cohn-Kanade数据库上的实验结果均表明,DLBP算子相比LBP算子、Gabor算子能更准确描述人脸基本表情,识别率平均分别提高了5%和1%;相比LBP算子对椒盐噪声和高斯白噪声具有更强的鲁棒性;且与LDP算子相比,识别率基本不变,但特征提取时间缩减近50%.由此可见,DLBP算子是一种快速有效的人脸表情描述子.
Abstract:
The traditional local binary pattern (LBP) algorithm for facial expression recognition could not describe the gray value change in different directions of somel expression regions, such as eyes, mouth, forehead, etc. The recognition result is not satisfied. This paper presents a simple and robust method, namely local binary pattern based on the directions (DLBP), which improves the coding pattern of LBP and encoded the difference from the horizontal, vertical and diagonal directions. Experimental results on JAFFE and Cohn-Kanade databases show that DLBP algorithm has achieved 5% and 1% higher recognition rates than other existing algorithms, such as LBP and Gabor. It has a strong robustness to Gaussian noise and salt and pepper noise compared with LBP, and Its feature extraction time is reduced by 50% compared to LDP. Therefore, the DLBP algorithm is a fast and effective feature descriptor.

参考文献/References:

[1] HUANG Di, SHAN Caifeng, ARDABILIAN M, et al. Local binary patterns and its application to facial image analysis: a survey[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2011, 41(6): 765-781.
[2] KYPEROUNTAS M, TEFAS A, PITAS I. Salient feature and reliable classifier selection for facial expression classification[J]. Pattern Recognition, 2010, 43(3): 972-986.
[3] OU Jun, BAI Xiaobo, PEI Yun, et al. Automatic facial expression recognition using Gabor filter and expression analysis[C]//Second International Conference on Computer Modeling and Simulation (ICCMS). Sanya, China, 2010: 215-218.
[4] LI P, PHUNG S L, BOUZERDOUM A, et al. Improved facial expression recognition with trainable 2-D filters and support vector machines[C]//20th International Conference on Pattern Recognition (ICPR). Istanbul, Turkey, 2010: 3732-3735.
[5] 张文超, 山世光, 张洪明, 等. 基于局部Gabor变化直方图序列的人脸描述与识别[J]. 软件学报, 2006, 17(12): 2508-2517. ZHANG Wenchao, SHAN Shiguang, ZHANG Hongming, et al. Histogram sequence of local Gabor binary pattern for face description and identification[J]. Journal of Software, 2006, 17(12): 2508-2517.
[6] 徐洁, 章毓晋. 基于多种采样方式和Gabor特征的表情识别[J]. 计算机工程, 2011, 37(18): 195-197. XU Jie, ZHANG Yujin. Expression recognition based on variant sampling method and Gabor features[J]. Computer Engineering, 2011, 37(18): 195-197.
[7] AHMED F. Gradient directional pattern: a robust feature descriptor for facial expression recognition[J]. Electronics Letters, 2012, 48(19): 1203-1204.
[8] HUANG Xiaohua, ZHAO Guoying, ZHENG Wenming, et al. Spatiotemporal local monogenic binary patterns for facial expression recognition[J]. IEEE Signal Processing Letters, 2012, 19(5): 243-246.
[9] JABID T, KABIR M H, CHAE O. Robust facial expression recognition based on local directional pattern[J]. ETRI Journal, 2010, 32(5): 784-794.
[10] ZHANG Baochang, GAO Yongsheng, ZHAO Sanqing, et al. Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor[J]. IEEE Transactions on Image Processing, 2010, 19(2): 533-544.
[11] 王玮, 黄非非, 李见为, 等. 使用多尺度LBP特征描述与识别人脸[J]. 光学精密工程, 2008, 16(4): 696-705. WANG Wei, HUANG Feifei, LI Jianwei, et al. Face description and recognition using multi-scale LBP feature[J]. Optics and Precision Engineering, 2008, 16(4): 696-705.
[12] 王玮, 黄非非, 李见为, 等. 采用LBP金字塔的人脸描述与识别[J]. 计算机辅助设计与图形学学报, 2009, 21(1): 94-100, 106.WANG Wei, HUANG Feifei, LI Jianwei, et al. Face description and recognition by LBP pyramid[J]. Journal of Computer Aided Design & Computer Graphics, 2009, 21(1): 94-100, 106.
[13] TAN Xiaoyang, TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1635-1650.
[14] YANG Hong, WANG Yiding. A LBP-based face recognition method with Hamming distance constraint[C]//Fourth International Conference on Image and Graphics. Beijing, China, 2007: 645-649.
[15] HUANG Di, WANG Yunhong, WANG Yiding. A robust method for near infrared face recognition based on extended local binary pattern[M]//BEBIS G, BOYLE R, PARVIN B, et al. Advances in Visual Computing. Berlin/Heidelberg: Springer, 2007: 437-446.
[16] 阮锦新. 多姿态人脸检测与表情识别关键技术研究[D]. 广州: 华南理工大学, 2010: 64-83. RUAN Jinxin. Study on key technology for multi-pose face detection and facial expression recognition[D]. Guangzhou, China: South China University of Technology, 2010: 64-83.
[17] PRIYA G N, BANU R S D W. Person independent facial expression detection using MBWM and multiclass SVM[J]. International Journal of Computer Applications, 2012, 55(17): 52-58.
[18] 付晓峰. 基于二元模式的人脸识别与表情识别研究[D]. 杭州: 浙江大学, 2008: 54-65. FU Xiaofeng. Research on binary pattern-based face recognition and expression recognition[D]. Hangzhou, China: Zhejiang University, 2008: 54-65.
[19] LAJEVARDI S M, HUSSAIN Z M. Higher order orthogonal moments for invariant facial expression recognition[J]. Digital Signal Processing, 2010, 20(6): 1771-1779.
[20] RAHULAMATHAVAN Y, PHAN R C W, CHAMBERS J A, et al. Facial expression recognition in the encrypted domain based on local fisher discriminant analysis[J]. IEEE Transactions on Affective Computing, 2013, 4(1): 83-92.

相似文献/References:

[1]孙正兴,徐文晖.基于局部SVM分类器的表情识别方法[J].智能系统学报,2008,3(05):455.
 SUN Zheng-xing,XU Wen-hui.Fac ial expression recogn ition based on local SVM classif iers[J].CAAI Transactions on Intelligent Systems,2008,3(03):455.
[2]张燕昆,洪初阳,WANG Charles.实时矩形交通限速标志识别系统[J].智能系统学报,2010,5(06):540.
 ZHANG Yan-kun,HONG Chu-yang,WANG Charles.A real time rectangular speed limit sign recognition system[J].CAAI Transactions on Intelligent Systems,2010,5(03):540.
[3]彭程,刘帅师,万川,等.基于局部纹理ASM模型的人脸表情识别[J].智能系统学报,2011,6(03):231.
 PENG Cheng,LIU Shuaishi,WAN Chuan,et al.An active shape model for facial expression recognition based on a local texture model[J].CAAI Transactions on Intelligent Systems,2011,6(03):231.
[4]王庆,唐涛,项德良,等.基于梯度比率的SAR图像局部特征提取方法研究[J].智能系统学报,2017,12(03):286.[doi:10.11992/tis.201603025]
 WANG Qing,TANG Tao,XIANG Deliang,et al.Research on local feature extraction of SAR images based on gradient ratio[J].CAAI Transactions on Intelligent Systems,2017,12(03):286.[doi:10.11992/tis.201603025]
[5]严云洋,陈垂雄,刘以安,等.维度加权模式动态纹理特征的火焰检测[J].智能系统学报,2017,12(04):548.[doi:10.11992/tis.201607021]
 YAN Yunyang,CHEN Chuixiong,LIU Yian,et al.Fire detection based on dynamic texture featuresunder a dimension-weighted mode[J].CAAI Transactions on Intelligent Systems,2017,12(03):548.[doi:10.11992/tis.201607021]

备注/Memo

备注/Memo:
收稿日期:2014-5-6;改回日期:。
基金项目:江苏省自然科学基金资助项目(BK20131342).
作者简介:童莹,女,1979年生,讲师,主要研究方向为图像处理与模式识别.发表学术论文10余篇,其中被SCI检索2篇、EI检索3篇.主编教材1部,参编了新教材2部.
通讯作者:童莹. E-mail: tongying@njpt.edu.cn.
更新日期/Last Update: 2015-07-15