[1]赵嘉,吕莉,樊棠怀.广义中心混合蛙跳算法[J].智能系统学报,2015,10(03):414-421.[doi:10.3969/j.issn.1673-4785.201405070]
 ZHAO Jia,LYU Li,FAN Tanghuai.Shuffled frog-leaping algorithm based on the general center[J].CAAI Transactions on Intelligent Systems,2015,10(03):414-421.[doi:10.3969/j.issn.1673-4785.201405070]
点击复制

广义中心混合蛙跳算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年03期
页码:
414-421
栏目:
出版日期:
2015-06-25

文章信息/Info

Title:
Shuffled frog-leaping algorithm based on the general center
作者:
赵嘉 吕莉 樊棠怀
南昌工程学院 信息工程学院, 江西 南昌 330099
Author(s):
ZHAO Jia LYU Li FAN Tanghuai
School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China
关键词:
蛙跳算法混合蛙跳算法广义中心蛙跳规则群智能算法
Keywords:
frog-leaping algorithmshuffled frog leaping algorithm (SFLA)general centerfrog leaping ruleswarm intelligence algorithms
分类号:
TP301
DOI:
10.3969/j.issn.1673-4785.201405070
文献标志码:
A
摘要:
为解决标准混合蛙跳算法族群之间信息共享能力差的问题,加强族群内蛙的学习能力,利用各族群最优蛙位置的平均中心,构造一个与各族群最优蛙都有关联的虚拟广义中心蛙,提出广义中心混合蛙跳算法.该算法在进化过程中,首先蛙群最优蛙在原有位置及广义中心蛙的位置上进行“贪婪”选择,选择最好位置作为新的族群最优蛙位置;其次将广义中心蛙的优势运用于蛙跳规则中,在标准混合蛙跳算法的蛙跳规则中加入族群最差蛙向广义中心蛙学习的能力.将本文算法与不同维度下的标准混合蛙跳算法及新近提出的知名群智能算法进行比较,实验结果表明,本文算法在解的精度、收敛速度及解的稳定性等方面具有更优的性能.
Abstract:
In this paper, a shuffled frog-leaping algorithm based on general center (GC-SFLA) is proposed to solve the problem of weak information sharing between memeplexes in the shuffled frog leaping algorithm (SFLA) to enhance the learning ability and use the average center of optimal frog. The proposed GC-SFLA generates a virtual general center frog from the optimal frog of each memeplex. Firstly, the optimal frog selects the best location among the original location and general center greedily as new location of new memeplex. After that, the advantage of general center frog is applied to the frog-leaping rule, which enable the worst frog to learn from the general center frog. Experiments are conducted on a set of swarm intelligence algorithms to verify that the new approach outperforms SFLA in different dimensions. The experiment results present promising performance of the GC-SFLA on convergence velocity, precision and stability of solution.

参考文献/References:

[1] EUSUFF M M, LANSEY K E. Optimization of water distribution network design using the shuffled frog leaping algorithm[J]. Journal of Water Resources Planning and Management, 2003, 129(3): 210-225.
[2] MOSCATO P. On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms, Technical report C3P 826[R]. Pasadena, USA: California Institute of Technology, 1989.
[3] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks. Perth, Australia, 1995: 1942-1948.
[4] RAHIMI-VAHED A, MIRZAEI A H. A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-model assembly line sequencing problem[J]. Computers & Industrial Engineering, 2007, 53(4): 642-666.
[5] 崔文华, 刘晓冰, 王伟, 等. 混合蛙跳算法研究综述[J]. 控制与决策, 2012, 27(4): 481-486, 493.CUI Wenhua, LIU Xiaobing, WANG Wei, et al. Survey on shuffled frog leaping algorithm[J]. Control and Decision, 2012, 27(4): 481-486, 193.
[6] FAN Tanghuai, LU Li, ZHAO Jia. Improved shuffled frog leaping algorithm and its application in node localization of wireless sensor networks[J]. Intelligent Automation & Soft Computing, 2012, 18(7): 807-818.
[7] XIA Li, LUO Jianping, CHEN Minrong, et al. An improved shuffled frog-leaping algorithm with extremal optimisation for continuous optimisation[J]. Information Sciences, 2012, 192: 143-151.
[8] ROY P, ROY P, CHAKRABARTI A. Modified shuffled frog leaping algorithm with genetic algorithm crossover for solving economic load dispatch problem with valve-point effect[J]. Applied Soft Computing, 2013, 13(11): 4244-4252.
[9] VAISAKH K, REDDY A S. MSFLA/GHS/SFLA-GHS/SDE algorithms for economic dispatch problem considering multiple fuels and valve point loadings[J]. Applied Soft Computing, 2013, 13(11): 4281-4291.
[10] 罗雪晖, 杨烨, 李霞. 改进混合蛙跳算法求解旅行商问题[J]. 通信学报, 2009, 30(7): 130-135. LUO Xuehui, YANG Ye, LI Xia. Modified shuffled frog-leaping algorithm to solve traveling salesman problem[J]. Journal on Communications, 2009, 30(7): 130-135.
[11] NIKNAM T, FIROUZI B B, MOJARRAD H D. A new evolutionary algorithm for non-linear economic dispatch[J]. Expert Systems with Applications, 2011, 38(10): 13301-13309.
[12] 张潇丹, 胡峰, 赵力, 等. 基于分子动力学模拟的改进混合蛙跳算法[J]. 数据采集与处理, 2012, 27(3): 327-332. ZHANG Xiaodan, HU Feng, ZHAO Li, et al. Improved shuffled frog leaping algorithm based on molecular dynamics simulations[J]. Journal of Data Acquisition & Processing, 2012, 27(3): 327-332.
[13] SUN Hui, ZHAO Jia. Application of particle sharing based particle swarm frog leaping hybrid optimization algorithm in wireless sensor network coverage optimization[J]. Journal of Information and Computational Science, 2011, 8(14): 3181-3188.
[14] 汤可宗. 遗传算法与粒子群优化算法的改进及应用研究[D]. 南京: 南京理工大学, 2011: 1-100. TANG Kezong. Modifications and application research on genetic algorithm and particle swarm optimization algorithm[D]. Nanjing, China: Nanjing University of Science & Technology, 2011: 1-100.
[15] LIU Yu, QIN Zheng, SHI Zhewen, et al. Center particle swarm optimization[J]. Neurocomputing, 2007, 70(4/5/6): 672-679.
[16] 汤可宗, 柳炳祥, 杨静宇, 等. 双中心粒子群优化算法[J]. 计算机研究与发展, 2012, 49(5): 1086-1094.TANG Kezong, LIU Bingxiang, YANG Jingyu, et al. Double center particle swarm optimization algorithm[J]. Journal of Computer Research and Development, 2012, 49(5): 1086-1094.
[17] YAO Xin, LIU Yong, LIN Guangming. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 82-102.
[18] ZHAN Zhihui, ZHANG Jun, LI Yun, et al. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems Man, and Cybernetics—Part B: Cybernetics, 2009, 39(6): 1362-1381.
[19] ZHU Guopu, KWONG S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173.
[20] WANG Hui, WU Zhijian, RAHNAMAYAN S, et al. Multi-strategy ensemble artificial bee colony algorithm[J]. Information Sciences, 2014, 279: 587-603.

备注/Memo

备注/Memo:
收稿日期:2014-6-3;改回日期:。
基金项目:国家自然科学基金资助项目(61261039,61263029);江西省自然科学基金资助项目(20132BAB211031);江西省科技厅科技支撑项目(20142BBG70034);南昌市科技计划项目(2013HZCG006,2013HZCG011,2014HZZC008).
作者简介:赵嘉,男,1981年生,副教授,主要研究方向为计算智能、群体智能、智能信息处理.吕莉,女,1982年生,副教授,主要研究方向计算智能、目标跟踪.樊棠怀,男,1962年生,教授,博士,主要研究方向为无线传感器网络、数据采集与处理、信息融合.
通讯作者:赵嘉. E-mail: zhaojia925@163.com.
更新日期/Last Update: 2015-07-15