[1]裴振兵,陈雪波.改进蚁群算法及其在机器人避障中的应用[J].智能系统学报,2015,10(1):90-96.[doi:10.3969/j.issn.1673-4785.201311018]
 PEI Zhenbing,CHEN Xuebo.Improved ant colony algorithm and its application in obstacle avoidance for robot[J].CAAI Transactions on Intelligent Systems,2015,10(1):90-96.[doi:10.3969/j.issn.1673-4785.201311018]
点击复制

改进蚁群算法及其在机器人避障中的应用

参考文献/References:
[1] COLORNI A, DORIGO M, MANIEZZO V. Distributed optimization by ant colonies[C]//Processings of the 1st European Conference on Artificial Life.Paris, France, 1991: 134-142.
[2] 徐利超, 张世武. 基于改进蚁群算法的障碍环境下路径规划研究[J].机械与电子, 2013 (7): 61-64.XU Lichao, ZHANG Shiwu. Study of path planning in obstacle environment based on an improved ant algorithm[J]. Machinery & Electronics, 2013,(7): 61-64.
[3] 朱绍伟,徐夫田,腾兆明.一种改进蚁群算法求解最短路径的应用[J].计算机技术与发展, 2011(7): 202-205.ZHU Shaowei, XU Futian, TENG Zhaoming. Application of improvement ants algorithm in solving shortest path[J]. Computer Technology and Development,2011, 21(7): 202-205.
[4] 柳长安, 鄢小虎, 刘春阳,等. 基于改进蚁群算法的移动机器人动态路径规划方法[J]. 电子学报, 2011, 39(5):1220-1224. LIU Changan, YAN Xiaohu, LIU Chunyang, et al. Dynamic path planning for mobile robot based on improoved ant colony optimization algorithm[J]. Acta Electronica Sinica, 2011, 39(5): 1220-1224.
[5] 段海滨. 蚁群算法原理及其应用[M]. 北京: 科学出版社, 2005: 176-181.
[6] GUTJAHR W J. A graph-based ant system and its convergence [J]. Future Generation Computer Systems, 2000, 16(8): 873-888.
[7] 周明秀, 程科, 王正霞.动态路径规划中的改进蚁群算法[J]. 计算机科学, 2012, 40(1): 314-316. ZHOU Mingxiu, CHENG Ke, WANG Zhengxia. Improved ant colony algorithm with planning of dynamic path[J]. Computer Science, 2012, 40(1): 314-316.
[8] 王越, 叶秋冬. 蚁群算法在求解最短路径问题上的改进策略[J]. 计算机工程与应用, 2012, 48(13): 35-38.WANG Yue, YE Qiudong. Improved strategies of ant colony algorithm for solving shortest path problem[J].Computer Engineering and Applications, 2012, 48(13):35-38.
[9] 赵凯, 李声晋, 孙娟, 等.改进蚁群算法在移动机器人路径规划中的研究[J]. 微型机与应用, 2013, 32(4): 67-70.ZHAO Kai, LI Shengjin, SUN Juan, et al. Research of improved ant colony algorithm in mobile robot path planning[J]. Microcomputer & its Applications, 2013, 32(4): 67-70.
[10] 温如春, 汤青波, 杨国亮. 基于改进蚁群算法的移动机器人路径规划[J]. 兵工自动化, 2010, 29(8): 69-70. WEN Ruchun, TANG Qingbo, YANG Guoliang. Mobile robot’s path planning based on improved ant colony algorithm[J]. Ordance Industry Automation, 2010, 29(8): 69-70.
[11] 张颖, 陈雪波. 广义蚁群算法及其在机器人队形变换中的应用[J]. 模式识别与人工智能, 2007, 19, 20(3): 3-8.ZHANG Ying, CHEN Xuebo. General ant colony algorithm and its applications in robot formation[J]. Pattern Recognition and Aitificial Intelligence, 2007, 19, 20(3): 3-8.
[12] JACKSON D E, HOLCOMBE M, RATNIEKS F L W. Trail geometry gives polarity to ant foraging networks [J].Nature, 2004, 432(7019):907-909.
[13] 贾振华, 斯庆巴拉, 王慧娟. 基于启发式机器人路径规划仿真研究[J]. 计算机仿真, 2012, 29(1): 135-138.JIA Zhenhua, SIQING Bala, WANG Huijuan. Path planning based on heuristic algorithm[J]. Computer Simulation, 2012, 29(1): 135-138.
[14] AI-TAHARWA I, SHETA A, AI-WESHAN M. A mobile robot path planning using genetic algorithm in static environment [J]. Journal of Computer Sciences, 2008, 4(4): 341-344.
[15] YAO L M, DUAN H B, SHAO S. Adaptive template matching based on improved ant colony optimization[C]//Proceedings of International Workshop on Intelligence Systems and Applications. [s.l.], 2009:1-4.
[16] BROOKS R A. Solving the find-path problem by good representation of free space [J]. IEEE Trans on System Man and Cybernetics, 1983, 13(3): 190-197.
[17] JANET J A. The essential visibility graph: an approach to global motion planning for autonomous mobile robots[C]//IEEE International Conference on Robotics and Automation. [s.l.], 1995: 1958-1963.
[18] EMILIO F. Real-time motion planning for agile autonomous vehicles [J]. Journal of Guidance, Control and Dynamics, 2002, 25(1):116-129.
[19] BONABEAU E, DORIGO M, Theraulaz G. Inspiration for optimization from social insect behavior [J]. Nature, 2000, 406(6): 39-42.
[20] DORIGO M, DI CARO G, GAMBARDELLA L M. Ant algorithms for discrete optimization [J]. Artificial Life, 1999, 5(2): 137-172.

备注/Memo

收稿日期:2013-11-7;改回日期:。
基金项目:国家自然科学基金资助项目(60874017).
作者简介:裴振兵,男,1989年生,硕士研究生,主要研究方向为智能优化及机器人路径规划;陈雪波,男,1960年生,教授,博士生导师,中国自动化学会过程控制专业委员会委员。主要研究方向为复杂系统、群集智能等。主持多项国家及省部级科研基金项目,出版专著1部。
通讯作者:陈雪波.E-mail:xuebochen@126.com.

更新日期/Last Update: 2015-06-16
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134