[1]卿铭,孙晓梅.一种新的聚类有效性函数:模糊划分的模糊熵[J].智能系统学报,2015,10(01):75-80.[doi:10.3969/j.issn.1673-4785.201410004]
 QING Ming,SUN Xiaomei.A new clustering effectiveness function: fuzzy entropy of fuzzy partition[J].CAAI Transactions on Intelligent Systems,2015,10(01):75-80.[doi:10.3969/j.issn.1673-4785.201410004]
点击复制

一种新的聚类有效性函数:模糊划分的模糊熵(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年01期
页码:
75-80
栏目:
出版日期:
2015-03-25

文章信息/Info

Title:
A new clustering effectiveness function: fuzzy entropy of fuzzy partition
作者:
卿铭1 孙晓梅2
1. 西南交通大学 数学学院, 四川 成都 600031;
2. 河南工程学院 数学与物理科学系, 河南 郑州 451191
Author(s):
QING Ming1 SUN Xiaomei2
1. School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China;
2. Department of Mathematical and Physical Science, Henan Institution of Engineering, Zhengzhou 451191, China
关键词:
模糊C均值聚类模糊划分的模糊熵聚类有效性聚类分析模糊划分模糊熵熵函数模糊集
Keywords:
fuzzy C-means clusteringfuzzy entropy of fuzzy partitionclustering effectivenessclustering analysisfuzzy partitionfuzzy entropyentropy functionfuzzy set
分类号:
TPO235
DOI:
10.3969/j.issn.1673-4785.201410004
文献标志码:
A
摘要:
模糊聚类分析结果是否合理的问题属于模糊聚类有效性判定课题,其核心是模糊聚类有效性函数的构造。文中基于序关系定义了模糊划分模糊熵来描述模糊划分的模糊程度。考虑到现有的一类有效的模糊聚类有效性函数就是基于数据集的模糊划分的,因此文中也用模糊划分的模糊熵作为聚类有效性函数。实验表明,模糊划分的模糊熵作为模糊聚类的有效性函数是合理的、可行的。
Abstract:
In this paper, the determination that whether a fuzzy clustering analysis result is reasonable or not is decided by the effectiveness of fuzzy clustering and its core is the construction of fuzzy clustering effectiveness function. This paper proposed a new concept of fuzzy entropy for a fuzzy partition to describe fuzzy degree of a fuzzy partition based on an order relation. Fuzzy entropy for a fuzzy partition is also considered as a clustering effectiveness function because some existing fuzzy clustering effectiveness functions are based on fuzzy partition of data sets. The experiments demonstrated that it is reasonable and practicable to utilize fuzzy entropy for a fuzzy partition as the effectiveness function of a fuzzy clustering.

参考文献/References:

[1] 范九伦. 模糊聚类新算法与聚类有效性问题研究[D]. 西安:西安电子科技大学, 1998: 52-77.FAN Jiulun. The studies on some new algorithms of fuzzy clustering and clustering validity [D]. Xian: Xidian University, 1998: 1-165.
[2] 范九伦,吴成茂.可能性划分系数和模糊变差相结合的聚类有效性函数[J].电子与信息学报, 2002, 24(8): 1017-1021. FAN Jiulun, WU Chengmao. Clustering validity function based on possibilistic partition coefficient combined with fuzzy variation [J]. Journal of Electronics and Information Technology, 2002, 24(8): 1017-1021.
[3] 范九伦,吴成茂.基于模糊熵的聚类有效性函数[J]. 模式识别与人工智能,2001,14(4): 390-394. FAN Jiulun, WU Chengmao. Clustering validity function based on fuzzy entropy [J]. Pattern Recongnition and Artificial Intelligence, 2001,14(4): 390-394.
[4] DUN J C. Some recent investigations of a new fuzzy partitions algorithm and its application to classification problems [J]. J Cybernet, 1974(4): 1-15.
[5] DAVE R N. Validating fuzzy partition obtained through c-shells clustering [J]. Pattern Recognition Letters, 1996(17): 613-623.
[6] ROBUBENS M. Pattern classification problems and fuzzy sets [J]. Fuzzy Sets Systems, 1978, 1: 239-253.
[7] BEZDEK J C, HARRIS J. Fuzzy partitions and relations—an axiomatic basis for clustering[J]. Fuzzy Sets and Systems, 1978(1): 111-126.
[8] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms [M]. New York:Plenum Press, 1981: 105-133.
[9] PAL N R, BEZDEK J C. On cluster validity for fuzzy C-means model [J]. IEEE Trans Fuzzy Systems, 1995(3): 370-379.
[10] ZHANG Huangxiang, LU Jin. Creating ensembles of classifiers via fuzzy clustering and deflection [J]. Fuzzy Sets and Systems, 2010(160): 1790-1802.
[11] YU Jian, YANG Minshen, LEE E S. Sample-weighted clustering methods [J]. Computers and Mathematics with Applications, 2011(62): 2200-2208.
[12] 岳士弘,黄媞,王鹏龙. 基于矩阵特征值分析的模糊聚类有效性指标[J]. 天津大学学报,2014, 47(8): 689-696.YUE Shihong, HUANG Ti, WANG Penglong. Matrix eigenvalue analysis-based clustering validity index [J]. Journal of Tianjin University, 2014, 47(8): 689-696.
[13] 张大庆,徐再花. 一种新的模糊聚类有效性指标[J]. 沈阳农业大学学报, 2012, 14(5): 636-639.ZHANG Daqing, XU Zaihua. A new validity index for fuzzy clustering [J]. Journal of Shenyang Agricultural University, 2012, 14(5): 636-639.
[14] 朱文婕,吴楠,胡学钢. 一个改进的模糊聚类有效性指标[J]. 计算机工程与应用, 2011, 45(5): 206-209.ZHU Wenjie, WU Nan, HU Xuegang. Improved cluster validity index for fuzzy clustering [J]. Computer Engineering and Applications, 2011, 45(5): 206-209.
[15] 胡春春,孟令奎,谢文君,等. 空间数据模糊聚类的有效性评价[J].武汉大学学报, 2007, 32(8): 740-743.HU Chunchun, MENG Lingkui, XIE Wenjun, et al. Validity measure on fuzzy clustering for spatial data [J]. Journal of Wuhan University, 2007, 32(8): 740-743.
[16] 郑弘亮,徐本强,赵晓慧,等. 新的模糊聚类有效性指标[J]. 计算机应用, 2014, 34(8): 2166-2169.ZHENG Hongliang, XU Benqiang, ZHAO Xiaohui, et al. Novel validity index for fuzzy clustering [J]. Journal of Computer Applications, 2014, 34(8): 2166-2169.
[17] 王丽娜,马晓晓. 一种改进的模糊聚类有效性指标[J]. 微电子学与计算机, 2014, 31(4): 68-74.WANG Lina, MA Xiaoxiao. An improved validity index for clustering [J]. Microelectronics and Computer, 2014, 31(4): 68-74.
[18] 张宇献,刘通,董晓,等. 基于改进划分系数的模糊聚类有效性函数[J]. 沈阳工业大学学报,2014, 36(4): 431-435.ZHANG Yuxian, LIU Tong, DONG Xiao, et al. Validity function for fuzzy clustering based on improved partition coefficient [J]. Journal of Shenyang University of Technology, 2014, 36(4): 431-435.
[19] 普运伟,金炜东,朱明,等. 核模糊C均值算法的聚类有效性研究[J]. 计算机科学,2007, 34(2): 207-210.PU Yunwei, JIN Weidong, ZHU Ming, et al. On cluster validity for kernelized fuzzy C-means algorithm [J]. Computer Science, 2007, 34(2): 207-210.
[20] 姚晓红,任珂珂,赵花妮,等. 一种新的模糊聚类有效性指标的验证[J]. 洛阳理工学院学报, 2012, 22(3): 76-79.YAO Xiaohong, REN Keke, ZHAO Huani, et al. The verification of a new fuzzy clustering validity index [J]. Journal of Luoyang Institute of Science and Technology, 2012, 22(3): 76-79.

备注/Memo

备注/Memo:
收稿日期:2014-10-8;改回日期:。
基金项目:中央高校基础研究基金资助项目(2682014ZT28).
作者简介:卿铭,男,1971年生,副教授,主要研究方向为智能信息处理、系统可信性分析,发表学术论文20余篇;孙晓梅,女,1962年生,副教授,主要研究方向为组合最优化。
通讯作者:卿铭.E-mail:qingming@swjtu.edu.cn.
更新日期/Last Update: 2015-06-16