[1]尹雨山,王李进,尹义龙,等.回溯搜索优化算法辅助的多阈值图像分割[J].智能系统学报,2015,10(01):68-74.[doi:10.3969/j.issn.1673-4785.201410008]
 YIN Yushan,WANG Lijin,YIN Yilong,et al.Backtracking search optimization algorithm assisted multilevel threshold for image segmentation[J].CAAI Transactions on Intelligent Systems,2015,10(01):68-74.[doi:10.3969/j.issn.1673-4785.201410008]
点击复制

回溯搜索优化算法辅助的多阈值图像分割(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年01期
页码:
68-74
栏目:
出版日期:
2015-03-25

文章信息/Info

Title:
Backtracking search optimization algorithm assisted multilevel threshold for image segmentation
作者:
尹雨山1 王李进12 尹义龙13 王冰清1 赵文婷1 徐云龙1
1. 山东大学 计算机科学与技术学院, 山东 济南 250101;
2. 福建农林大学 计算机与信息学院, 福建 福州 350002;
3. 山东财经大学 计算机科学与技术学院, 山东 济南 250014
Author(s):
YIN Yushan1 WANG Lijin12 YIN Yilong13 WANG Binqing1 ZHAO Wenting1 XU Yunlong1
1. School of Computer Science and Technology, Shandong University, Jinan 250101, China;
2. College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350001, China;
3. School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China
关键词:
阈值法回溯搜索优化算法图像分割OtsuKapurPSNR
Keywords:
threshold methodbacktracking search optimization algorithmimage segmentationOtsuKapurPSNR
分类号:
TP183
DOI:
10.3969/j.issn.1673-4785.201410008
文献标志码:
A
摘要:
阈值法是一种简单且有效的图像分割技术。然而阈值求解的计算量随阈值的增加而呈指数级别增长,这给多阈值图像分割带来巨大挑战。为了克服计算量过大问题,视多阈值分割模型为优化问题,分别将Otsu法和Kapur法作为目标函数,采用回溯搜索优化算法求解目标函数,实现多阈值图像分割。将提出的多阈值分割算法应用于自然图像分割,并与其他算法比较,实验结果说明基于回溯搜索优化算法的多阈值图像分割技术是可行的,而且具有较好的分割效果。
Abstract:
The threshold method is a simple and effective image segmentation technique. However, the amount of calculation for solving threshold appears to be exponential amplification with the increase of threshold. This results in a huge challenge for multi-threshold image segmentation. This paper utilizes Otsu and Kapur methods as the target function in order to deal with image segmentation.In this paper, image segmentation is considered as an optimization problem whose objective function is formulated according to Otsu and Kapur methods, respectively. The backtracking search optimization algorithm is used to solve these two objective functions and to realize multi-threshold image segmentation. The proposed approach is applied to nature image segmentation and compared to other algorithms. The results showed that the multi-threshold image segmentation technique on the basis of backtracking search optimization algorithm is feasible and the segmentation effect is satisfactory.

参考文献/References:

[1] 章毓晋. 图像工程 [M]. 北京:清华大学出版社, 2002:179-186.
[2] 刘国英, 马国锐, 王雷光, 等. 基于Markov随机场的小波域图像建模及分割—Matlab环境[M]. 北京:科学出版社, 2010: 6-15.
[3] OTSU N. A threshold selection method from gray-level histograms[J]. Automatica, 1975, 11: 23-27.
[4] PUN T. A new method for grey-level picture thresholding using the entropy of the histogram[J]. Signal Processing, 1980, 2(3): 223-237.
[5] KAPUR J N, SAHOO P K, WONG A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics and Image Processing, 1985, 29(3): 273-285.
[6] REDDI S S, RUDIN S F, KESHAVAN H R. An optimal multiple threshold scheme for image segmentation[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1984, 14(4): 661-665.
[7] KITTLER J, ILLINGWORTH J. Minimum error thresholding[J]. Pattern Recognition, 1986, 19(1): 41-47.
[8] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679-698.
[9] ZIOU D, TABBONE S. Edge detection techniques: an overview[J]. International Journal of Pattern Recognition and Image Analysis, 1998, 8(4): 537-559.
[10] CHEN P C, PAVLIDIS T. Segmentation by texture using a co-occurrence matrix and a split-and-merge algorithm[J]. Computer Graphics Image Processing, 1979, 10(2): 172-182.
[11] CHEN S Y, LIN W C, CHEN C T. Split-and-merge image segmentation based on localized feature analysis and statistical tests[J]. CVGIP: Graphical Models and Image Processing, 1991, 53(5): 457-475.
[12] CHANG Y L, LI X. Adaptive image region-growing[J]. IEEE Transactions on Image Processing, 1994, 3(6): 868-872.
[13] BOYKOV Y, JOLLY MP. Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images[C]//Proceedings of the Eighth International Conference on Computer Vision. Piscataway, NJ: IEEE, 2001:105-112.
[14] GRADY L. Random walks for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 1768-1783.
[15] KASS M, WITKIN A, TERZOPOULOS D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321-331.
[16] OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49.
[17] ROUT S, SRIVASTAVA M J. Multimodal image segmentation using a modified Hopfield neural network[J]. Pattern Recognition, 1998, 31(6): 743-750.
[18] 林开颜, 徐立鸿, 吴军辉. 快速模糊C均值聚类彩色图像分割方法[J]. 中国图像图像学报, 2004, 9(2): 159-163. LIN Kaiyan, XU Lihong, WU Junhui. A fast fuzzy C-M eans cluster ing for color image segmentation[J]. Journal of Image and Graphics, 2014, 9(2):159-163.
[19] CAO G B, WANG S L, WEI B Z, et al. A hybrid CNN-RF method for electron microscopy images segmentation[J]. Journal of Biomimetics Biomaterials and Tissue Engineering, 2013, 18(2): 1-6.
[20] WANG S L, CAO G B, WEI B Z, et al. Hierarchical level features based trainable segmentation for electron microscopy images[J]. Biomedical Engineering Online, 2013, 12(1): 59-72.
[21] TANG K Z, YUAN X J, SUN T K, et al. An improved scheme for minimum cross entropy threshold selection based on genetic algorithm[J]. Knowledge-Based Systems, 2011, 24(8): 1131-1138.
[22] YIN P Y. Multilevel minimum cross entropy threshold selection based on particle swarm optimization[J]. Applied Mathematics and Computation, 2007, 182(2): 503-513.
[23] ALI M, AHN C W, PANT M. Multi-level image thresholding by synergetic differential evolution[J]. Applied Soft Computing, 2014, 17: 1-11.
[24] AGRAWAL S, PANDA R, BHUYAN S, et al. Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm[J]. Swarm and Evolutionary Computation, 2013, 11: 16-30.
[25] SATHYA P D, KAYALVIZHI R. Optimal multilevel thresholding using bacterial foraging algorithm[J]. Expert System with Application, 2011, 38(12): 15549-15564.
[26] HORNG M H, LIOU R J. Multilevel minimum cross entropy threshold selection based on the firefly algorithm[J]. Expert System with Application, 2011,38(12): 14805-14811.
[27] MA M, LIANG J H, GUO M, et al. SAR image segmentation based on artificial bee colony algorithm[J]. Applied Soft Computing, 2011, 11(8): 5205-5214.
[28] CIVICIOGLU P. Backtracking search optimization algorithm for numerical optimization problems[J]. Applied Mathematics and Computation, 2013, 219: 8121-8144.
[29] MATHWORKS. Multilevel image thresholds using Otsu’s method[EB/OL]. [2014-08-22]. http://www.mathworks.cn/cn/help/images/ref/multithresh.html.
[30] SHI Y H, EBERHART R C. A modified particle swarm optimizer[C]//Proceedings of the 1998 IEEE World Congress on Computational Intelligence. Piscataway, NJ, 1998: 69-73.

备注/Memo

备注/Memo:
收稿日期:2014-10-8;改回日期:。
基金项目:国家自然科学基金-广东联合基金重点资助项目(U1201258);山东省自然科学杰出青年基金资助项目(JQ201316).
作者简介:尹雨山,男,1990年生,硕士研究生,主要研究方向为智能信息处理及其应用;王李进,男,1977年生,副教授,主要研究方向为计算智能及其应用;尹义龙,男,1972年生,教授,博士生导师,主要研究方向为机器学习、数据挖掘、图像处理。中国人工智能学会机器学习专委会副秘书长、中国计算机学会多值逻辑与模糊逻辑专委常委、人工智能与模式识别专委会委员。主持国家自然科学基金重点项目等科研项目10余项。获国家发明专利授权6项。获2014年度山东省科技进步二等奖1项,2011年入选教育部新世纪优秀人才支持计划。
通讯作者:王李进.E-mail:lijinwang@fafu.edu.cn.
更新日期/Last Update: 2015-06-16