[1]莫愿斌,马彦追,郑巧燕,等.单纯形法的改进萤火虫算法及其在非线性方程组求解中的应用[J].智能系统学报,2014,9(06):747-755.[doi:10.3969/j.issn.1673-4785.201309075]
 MO Yuanbin,MA Yanzhui,ZHENG Qiaoyan,et al.Improved firefly algorithm based on simplex method and its application in solving non-linear equation groups[J].CAAI Transactions on Intelligent Systems,2014,9(06):747-755.[doi:10.3969/j.issn.1673-4785.201309075]
点击复制

单纯形法的改进萤火虫算法及其在非线性方程组求解中的应用
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第9卷
期数:
2014年06期
页码:
747-755
栏目:
出版日期:
2014-12-25

文章信息/Info

Title:
Improved firefly algorithm based on simplex method and its application in solving non-linear equation groups
作者:
莫愿斌12 马彦追1 郑巧燕1 袁伟军2
1. 广西民族大学 信息科学与工程学院, 广西 南宁 530006;
2. 广西混杂计算与集成电路设计分析重点实验室, 广西 南宁 530006
Author(s):
MO Yuanbin12 MA Yanzhui1 ZHENG Qiaoyan1 YUAN Weijun2
1. College of Information Science and Engineering, Guangxi University for Nationalities, Nanning 530006, China;
2. Guangxi Key Laboratory of Mixed Computing Integrated Circuit Design and Analysis, Nanning 530006, China
关键词:
萤火虫算法单纯形法函数优化非线性方程组
Keywords:
firefly algorithmsimplex methodfunction optimizationnon-linear equation groups
分类号:
TP18
DOI:
10.3969/j.issn.1673-4785.201309075
文献标志码:
A
摘要:
萤火虫算法(FA)是一种基于群体搜索的启发式随机优化算法,其模拟自然界中萤火虫利用发光的生物学特性而表现出来的社会性行为。针对萤火虫算法存在着收敛速度慢、易陷入局部最优、求解精度低等不足,利用单纯形法局部搜索速度快和萤火虫算法全局寻优的特点,提出一种基于单纯形法的改进型萤火虫算法(SMFA)。通过对标准测试函数以及非线性方程组的实验仿真,并与其他算法进行的对比分析表明,改进后的算法在函数优化方面有较强的优势,在一定程度上有效地避免了陷入局部最优,提高了搜索的精度。
Abstract:
The firefly algorithm (FA) is a heuristic random optimization algorithm based on groupization. It simulates the social behavior of firefly in the natural environment represented in its biological characteristics of shining. FA has disadvantages in global searching, such as slow convergence speed, high possibility of being trapped in local optimum and low solving precision. An improved FA based on the simplex method is proposed. The proposed method combines the characteristics of speedy local search of simplex method with the global optimization of firefly algorithm. The simplex method modifies the firefly, which is located at poor positions through its reflection, expansion and compression operation. However, it improves the diversity of individuals and avoids falling into local optimum and improves the precision of the algorithm. The results showed that through simulations of standard benchmark functions and nonlinear functions and contrasted with other algorithms, the improved algorithm has a strong advantage in function optimization. It also avoids trapping in local optimum and improves the calculation accuracy to a certain extent.

参考文献/References:

[1] YANG X S. Nature-inspired metaheuristic algorithms[M]. : Luniver Press, 2008: 1-30.
[2] YANG X S. Firefly algorithms for multimodal optimization[C]//Stochastic Algorithms: Foundations and Applications. Sapporo, Japan, 2009, 5792: 169-178.
[3] SAYADI M K, RAMEZANIAN R, GHAFFARI-NASAB N. A discrete firefly meta-heuristic with local search for make span minimization in permutation flow shop scheduling problems[J]. International Journal of Industrial Engineering Computations, 2010, 1(1): 1-10.
[4] BANDA M, SRIVASTAVA P R, YANG X S, et al. Optimal test sequence generation using firefly algorithm[J]. Swarm and Evolutionary Computation, 2013, 8: 44-53.
[5] HORNG M H, LIOU R J. Multilevel minimum cross entropy threshold selection based on the firefly algorithm[J]. Expert Systems with Applications, 2011, 38: 14805-14811.
[6] 郭丽萍, 李向涛, 谷文祥. 改进的萤火虫算法求解阻塞流水线调度问题[J]. 智能系统学报, 2013, 8(1): 33-38.GUO Liping, LI Xiangtao, GU Wenxiang. An improved firefly algorithm for the blocking flow shop scheduling problem[J]. CAAI Transactions on Intelligent Systems, 2013, 8(1): 33-38.
[7] 刘长平, 叶春明. 具有混沌搜索策略的萤火虫优化算法[J]. 系统管理学报, 2013, 4: 538-543.LIU Changping, YE Chunming. Firefle algorithm with chaotic search strategy[J]. Journal of Systems & Management, 2013, 22(4): 538-543.
[8] FARAHAN S M, ABSHOURI A, NASIRI B, et al. A Gaussian firefly algorithm[J]. International Journal of Machine Learning and Computing, 2011, 1(5): 448-454.
[9] YANG X S. Firefly algorithm, levy flights and global optimization[C]//Research and Development in Intelligent SystemsXXVI. Berlin, Germany, 2010: 209-218.
[10] GANDOMI A, YANG X S, TALATAHARI S, et al. Firefly algorithm with chaos[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(1): 89-98.
[11] SUBUTIC M, TUBA M, STANAREVIC N. Parallelization of the firefly algorithm for unconstrained optimization problems[J]. Latest Advances in Information Science and Applications, 2012, 22(3): 264-269.
[12] ABDULLAH A, DERIS S, MOHAMAD M, et al. A new hybrid firefly algorithm for complex and nonlinear problem[J]. Distributed Computing and Artificial Intelligence, 2012, 14(4): 673-680.
[13] FARAHANI S, ABSHOURI A, NASIRI B, et al. Some hybrid models to improve firefly algorithm performance[J]. International Journal of Artificial Intelligence, 2012, 8(12): 97-117.
[14] 冯艳红, 刘建芹, 贺毅朝. 基于混沌理论的动态种群萤火虫算法[J]. 计算机应用, 2013, 33(3): 796-805.FENG Yanhong, LIU Janqin, HE Yichao. Chaos-based dynamic population firefly algorithm[J]. Journal of Computer Applications, 2013, 33(3): 796-805.
[15] 张红霞, 罗毅, 师瑞峰. 基于单纯形法的改进型人工鱼群算法[J].计算机应用, 2011, 31(5): 1321-1327.ZHANG Hongxia, LUO Yi, SHI Ruifeng. Artificial fish swarm algorithm based on simplex method[J]. Journal of Computer Applications, 2011, 31(5): 1321-1327.
[16] 曲良东,何登旭,黄勇. 自适应改进和声—单纯形进化算法研究[J]. 计算机应用研究, 2013, 30(3): 676-678.QU Liangdong, HE Dengxu, HUANG Yong. Research on adaptive improved harmony—simplex evolutionary algorithm[J]. Application Research of Computers, 2013, 30(3): 676-678.
[17] GROSAN C, ABRAHAM A. A new approach for solving nonlinear equations systems[J]. IEEE Trans Systems and Humans, 2008, 38(3): 698-714.

相似文献/References:

[1]郭丽萍,李向涛,谷文祥,等.改进的萤火虫算法求解阻塞流水线调度问题[J].智能系统学报,2013,8(01):33.[doi:10.3969/j.issn.1673-4785.201205012]
 GUO Liping,LI Xiangtao,GU Wenxiang,et al.An improved firefly algorithm for the blocking flow shop scheduling problem[J].CAAI Transactions on Intelligent Systems,2013,8(06):33.[doi:10.3969/j.issn.1673-4785.201205012]
[2]朱书伟,周治平,张道文.融合并行混沌萤火虫算法的K-调和均值聚类[J].智能系统学报,2015,10(6):872.[doi:10.11992/tis.201505043]
 ZHU Shuwei,ZHOU Zhiping,ZHANG Daowen.K-harmonic means clustering merged with parallel chaotic firefly algorithm[J].CAAI Transactions on Intelligent Systems,2015,10(06):872.[doi:10.11992/tis.201505043]
[3]魏伟一,文雅宏.一种精英反向学习的萤火虫优化算法[J].智能系统学报,2017,12(05):710.[doi:10.11992/tis.201706014]
 WEI Weiyi,WEN Yahong.Firefly optimization algorithm utilizing elite opposition-based learning[J].CAAI Transactions on Intelligent Systems,2017,12(06):710.[doi:10.11992/tis.201706014]
[4]贾鹤鸣,彭晓旭,邢致恺,等.改进萤火虫优化算法的Renyi熵污油图像分割[J].智能系统学报,2020,15(2):367.[doi:10.11992/tis.201809002]
 JIA Heming,PENG Xiaoxu,XING Zhikai,et al.Renyi entropy based on improved firefly optimization algorithm for image segmentation of waste oil[J].CAAI Transactions on Intelligent Systems,2020,15(06):367.[doi:10.11992/tis.201809002]

备注/Memo

备注/Memo:
收稿日期:2013-9-25;改回日期:。
基金项目:国家自然科学基金资助项目(21466008);广西民族大学科研资助项目(2014MDYB030).
作者简介:莫愿斌,男,1969年生,副教授,博士,主要研究方向为智能信息处理与应用;马彦追,男,1987年生,硕士研究生,主要研究方向为计算智能;郑巧燕,女,1989年生,硕士研究生,主要研究方向为计算智能。
通讯作者:莫愿斌.E-mail:674148582@qq.com.
更新日期/Last Update: 2015-06-16