[1]拓守恒,雍龙泉.一种用于PID控制的教与学优化算法[J].智能系统学报,2014,9(06):740-746.[doi:10.3969/j.issn.1673-4785.201304072]
 TUO Shouheng,YONG Longquan.A modified teaching-learning-based optimization algorithm for parameter tuning of a PID controller[J].CAAI Transactions on Intelligent Systems,2014,9(06):740-746.[doi:10.3969/j.issn.1673-4785.201304072]
点击复制

一种用于PID控制的教与学优化算法
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第9卷
期数:
2014年06期
页码:
740-746
栏目:
出版日期:
2014-12-25

文章信息/Info

Title:
A modified teaching-learning-based optimization algorithm for parameter tuning of a PID controller
作者:
拓守恒 雍龙泉
陕西理工学院 数计学院, 陕西 汉中 723000
Author(s):
TUO Shouheng YONG Longquan
School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723000, China
关键词:
PID控制器TLBO算法MTLBO算法粒子群算法遗传算法
Keywords:
proportional-integral-derivative controllerteaching-learning-based optimizationparticle swarm optimizationgenetic algorithm
分类号:
TP301.6;N945
DOI:
10.3969/j.issn.1673-4785.201304072
文献标志码:
A
摘要:
为了有效提高PID控制器的性能,提出了一种改进的教与学优化算法(MTLBO),并将MTLBO算法应用到了PID控制器的参数优化。改进的教与学优化算法对TLBO算法中的“教”和“学”分别进行了改进,并引入了一种新的“自我学习”方法,使其有效提高了算法的搜索能力,并成功地将其应用于PID控制器的参数优化整定。通过与基本TLBO算法、粒子群算法和遗传算法相比,MTLBO算法在PID控制器的参数优化中具有优化速度快,求解精度高等优势。
Abstract:
In order to enhance the performance of a PID controller, a modified teaching-learning-based optimization (MTLBO) algorithm is presented and applied to the parameter optimization of the PID controller. The MTLBO algorithm modifies the "Teaching" and "Learning" phases, respectively. It is based on the basic teaching-learning-based optimization (TLBO) method, which introduces a new "self-learning" method. It also improves the searching ability of the TLBO. The MTLBO algorithm is successfully applied to parameter optimization and tuning of the PID controller. In order to demonstrate the performance of the proposed algorithm, the MTLBO method is compared with GA, PSO and TLBO algorithms. The experimental results showed that the MTLBO algorithm has distinct advantages in speed and precision.

参考文献/References:

[1] 金翠云,王建林.改进的PSO 算法及其在PID 控制器参数整定中的应用[J].电子测量与仪器学报, 2010, 2(24): 141-146.JIN Cuiyun, WANG Jianlin. Application of improved PSO for parameter tuning of PID controller[J]. Journal of Electronic Measurement and Instrument, 2010, 2(24): 141-146.
[2] 秦福高,毛莺池.改进遗传算法在PID 优化中的应用[J]. 计算机工程, 2011, 9(37): 149-151.QIN Fugao, MAO Yingchi. Application of improved genetic algorithm in PID optimization[J]. Computer Engineering, 2011, 9(37): 149-151.
[3] 李超顺,周建中,肖剑.基于改进引力搜索算法的励磁控制PID参数优化[J]. 华中科技大学学报: 自然科学版, 2012, 40(10): 119-122. LI Chaoshun, ZHOU Jianzhong, XIAO Jian. PID parameter optimization of excitation control systems by using improved gravitational search algorithm[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2012, 40(10): 119-122.
[4] ZHONG Jinghua. PID controller tuning: a short tutorial[OL/EB].[2013-01-22]. http://saba.kntu.ac.ir/eecd/pcl/download/PIDtutorial.pdf.
[5] ANG K H, CHONG G C Y, LI Y. PID control system analysis, design, and technology[J]. IEEE Trans Control Systems Tech, 2005, 13(4): 559-576.
[6] DEY C. An improved auto-tuning scheme for PID controllers[J]. ISA Trans, 2011, 48(4): 396-409.
[7] MIZUMOTO I, IKEDA D, HIRAHATA T, et al. Design of discrete time adaptive PID control systems with parallel feedforward compensator[J]. Control Eng Practice, 2010, 18(2): 168-176
[8] AHN K K, TRUONG D Q. Online tuning fuzzy PID controller using robust extended Kalman filter[J]. J Process Control, 2009, 19(6): 1011-1023.
[9] TRUONG D Q, AHN K K. Force control for press machines using an online smart tuning fuzzy PID based on a robust extended Kalman filter[J]. Exp Syst Appl, 2011, 38(5): 5879-5894.
[10] JAHEDI G, ARDEHALI M M. Genetic algorithm-based fuzzy-PID control methodologies for enhancement of energy efficiency of adynamic energy system[J]. Energy Convers Manage, 2011, 52(1): 725-732.
[11] CHIOU J S, LIU M T. Numerical simulation for fuzzy-PID controllers and helping EP reproduction with PSO hybrid algorithm[J]. Simulat Modell Practice Theory, 2009, 17(10): 1555-1565.
[12] WANG Hui, YUAN Xiaofang. Harmony search algorithm-based fuzzy-PID controller for electronic throttle valve[J]. Neural Comput & Applic, 2013, 22: 329-336.
[13] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems[J]. Computer-Aided Design, 2011 (43): 303-315.
[14] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems[J]. Information Sciences, 2012, 183(1) : 1-15.
[15] MATEJ C, LIU S H, MERNIK L. A note on teaching-learning-based optimization algorithm[J]. Information Sciences, 2012, 212(12) : 79-93.
[16] RAO R V, PATEL V. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems[J]. International Journal of Industrial Engineering Computations, 2012(3): 535-560.
[17] ZOU D X, GAO L Q, WU J H, et al. A novel global harmony search algorithm for reliability problems[J]. Computers & Industrial Engineering, 2010, 58 (2): 307-316.
[18] GEEM Z W, KIM J H, LOGANATHAN G V. A new heuristic optimization algorithm: harmony search[J]. Simulation, 2001, 76: 60-68.
[19] TUO Shouheng, YONG Longquan. An improved harmony search algorithm with chaos[J]. Journal of Computational Information Systems, 2012, 8(10): 4269-4276.
[20] GOLDBERG D E. Genetic algorithms in search optimization and machine learning[M]. Addison-Wesley, Boston,1989: 2-32.
[21] EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of The Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995: 25-30.
[22] 史峰,王辉. Matlab智能算法30个案例分析[M]. 北京:北京航空航天大学出版社, 2011: 21-31.

备注/Memo

备注/Memo:
收稿日期:2013-4-24;改回日期:。
基金项目:国家自然科学基金资助项目(11401357),陕西省教育厅科研资助项目(14JK1141),汉中市科技局科研资助项目(2013hzzx-39),陕西理工学院科研基金资助项目(SLGKY12-04).
作者简介:拓守恒,男,1978年生,副教授,CCF会员,主要研究方向为智能优化算法与智能信息处理,发表学术论文多篇。
通讯作者:拓守恒.E-mail:tuo_sh@126.com.
更新日期/Last Update: 2015-06-16