[1]拓守恒,邓方安,雍龙泉.改进教与学优化算法的LQR控制器优化设计[J].智能系统学报,2014,9(5):602-607.[doi:10.3969/j.issn.1673-4785.201304071]
 TUO Shouheng,DENG Fangan,YONG Longquan.Optimal design of a linear quadratic regulator (LQR) controller based on the modified teaching-learning-based optimization algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(5):602-607.[doi:10.3969/j.issn.1673-4785.201304071]
点击复制

改进教与学优化算法的LQR控制器优化设计

参考文献/References:
[1] RAO P, CROW M L, YANG Z. STATCOM control for power system voltage control applications[J]. IEEE Trans Power Electron, 2000, 15(4):1315-1317.
[2] KALMAN R E. When is a linear control system optimal[J]. J Basci Eng Trans, 1964, 86(1):51-56.
[3] WANG Yaoqing. The determination of weighting matrices in LQ optimal control system [J]. Acta Automatic Sinica, 1992.
[4] SUNG Ghengchung, CHEN Gong. Optimal control systems design associated with genetic algorithm[C]//Proceedings of 2006 CACS Automatic Control Conference St. Taiwan, China, 2006:10-11.
[5] BOTTURA C P. Rule based decision making unit for Eigen structure assignment via parallel genetic algorithm and LQR design[C]//Proceedings of the American Control Conference. Chicago, Illinois, 2000:467-471.
[6] BOTTURA C P. Parallel eigen structure assignment via LQR design and genetic algorithms[C]//Proceedings of the American Control Conference. San Diego, 1999:2295-2299.
[7] HASSANZADEH I, MOBAYEN S, HARIFI A. Input-output feedback linearization cascade controller using genetic algorithm for rotary inverted pendulum[J]. American Journal of Applied Sciences, 2008, 5 (10):1322-1328.
[8] HAMIDI J. Control system design using particle swarm optimization[J]. International Journal of Soft Computing and Engineering, 2012, 1(6):2231-2307.
[9] 刘璐, 任开春, 武明亮. 基于网格划分策略的自适应ACO 算法优化LQR 控制器权值[J]. 西 南 科 技 大 学 学 报, 2012, 25(3):82-88. LIU Lu, REN Kaichun, WU Mingliang. LQR Controller weight matrices optimized by adaptive ant colony algorithms based on meshing strategy[J]. Journal of Southwest University of Science and Technology, 2012, 25(3):82-88.
[10] 史峰, 王辉. MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社, 2011:255-300.
[11] 郭一峰, 徐赵东, 涂青, 等. 基于遗传算法的LQR算法中权矩阵的优化分析[J].振动与冲击, 2010, 29(11):217-221.GUO Yifeng, XU Zhaodong, TU Qing, et al. Optimized analysis of weight matrix in LQR algorithm based on genetic algorithm[J]. Journal of Vibration and Shock, 2010, 29(11):217-221.
[12] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization:anovel method for constrained mechanical design optimization problems [J]. Computer-Aided Design, 2011:303-315.
[13] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization:an optimization method for continuous non-linear large scale problems [J]. Information Sciences, 2012:1-15.
[14] 拓守恒, 雍龙泉, 邓方安. "教与学"优化算法研究综述[J]. 计算机应用研究, 2013(7):1933-1938.TUO Shouheng, YONG Longquan, DENG Fang’an. Survey of teaching-learning-based optimization algorithms [J]. Application Research of Computers, 2013(7):1933-1938.
[15] 何红, 拓守恒. 教与学优化算法在梯级水库优化调度中的应用[J]. 计算机与数字工程, 2013(7):1057-1059.HE Hong, TUO Shouheng. Application of teaching-learning-based optimization in optimal dispatching of cascade reservoirs[J]. Computer & Digital Engineering, 2013, 7:1057-1059.
[16] 拓守恒. 一种优化神经网络的教与学优化算法[J]. 智能系统学报, 2013, 8(4):327-332.TUO Shouheng. A modified teaching-learning-based optimization algorithm and application in neural networks [J]. CAAI Transactions on intelligent systems, 2013, 8(4):327-332.
[17] 拓守恒. 改进的教与学优化算法[C]//第32届中国控制会议论文集(E卷).西安, 中国, 2013:7976-7981.TUO Shouheng. Modified teaching-learning-based optimization algorithm[C]//2013 32nd Chinese Control Conference, Xi’an, China, 2013:7976-7981.
[18] 拓守恒. 利用教与学优化策略改进的和声搜索算法[C]//第32届中国控制会议论文集(E卷).西安, 中国, 2013:6-10.TUO Shouheng. An improved harmony search algorithm based on teaching-learning strategy[C]. 2013 32nd Chinese Control Conference, 2013:6-10.
[19] EK M C, LIU S H, MERNIK L. A note on teaching-learning-based optimization algorithm[J]. Information Sciences, 2012:79-93.
[20] RAO R V, PATEL V. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems[J]. International Journal of Industrial Engineering Computations, 2012(3):535-560.
[21] 胡 斐, 赵治国. 主动悬架LQR 控制加权系数多目标遗传算法优化[J]. 机械与电子, 2011(2):28-31.HU Fei, ZHAO Zhiguo. Optimization of weighting factors for LQR controller of active suspension based on multi-objective genetic algorithm [J]. Machinery & Electronics, 2011(2):28-31.
相似文献/References:
[1]彭勇,陈俞强.改进蛙跳算法的LQR控制器的优化设计[J].智能系统学报,2014,9(4):480.[doi:10.3969/j.issn.1673-4785.201305055]
 PENG Yong,CHEN Yuqiang.Optimal design of the LQR controller based on the improved shuffled frog-leaping algorithm[J].CAAI Transactions on Intelligent Systems,2014,9():480.[doi:10.3969/j.issn.1673-4785.201305055]

备注/Memo

收稿日期:2013-04-24。
基金项目:国家自然科学基金资助项目(11401357);陕西省教育厅基金资助项目(14JK1141);汉中市科技局基金资助项目(2013hzzx-39).
通讯作者:拓守恒, 男, 1978年生, 副教授, CCF会员, 主要研究方向为智能优化算法和生物信息学。E-mail:tuo_sh@126.com.

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134