[1]陶倩,马刚,史忠植.基于Agent的专家系统推理模型[J].智能系统学报,2013,8(02):135-142.[doi:10.3969/j.issn.1673-4785.201210043]
 TAO Qian,MA Gang,SHI Zhongzhi.Research on the expert system reasoning model based on Agent[J].CAAI Transactions on Intelligent Systems,2013,8(02):135-142.[doi:10.3969/j.issn.1673-4785.201210043]
点击复制

基于Agent的专家系统推理模型(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第8卷
期数:
2013年02期
页码:
135-142
栏目:
出版日期:
2013-04-25

文章信息/Info

Title:
Research on the expert system reasoning model based on Agent
文章编号:
1673-4785(2013)02-0135-08
作者:
陶倩1马刚2史忠植2
1.上海体育学院 体育赛事研究中心,上海 200438;
2.中国科学院计算技术研究所 智能信息处理重点实验室,北京 100190
Author(s):
TAO Qian1 MA Gang2 SHI Zhongzhi2
1. The Sports Event Research Center of Shanghai University of Sport, Shanghai 200438, China;
2. Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
关键词:
Agent推理模型专家系统体育赛事
Keywords:
Agent reasoning model expert system sporting events
分类号:
TP391.6
DOI:
10.3969/j.issn.1673-4785.201210043
文献标志码:
A
摘要:
针对传统专家系统推理模型结构在知识获取方面适应性差的现状,从系统科学的视角,运用复杂适应系统理论,对传统专家系统的结构及运行机制进行了改进.引入Agent来模拟人脑中的神经元,用来承载专家系统中相互作用的知识,然后,基于Multi-Agent之间的相互作用来构建复杂适应的专家系统推理模型.从而,将专家系统中的知识获取机制、知识库、推理机三者统一于由Multi-Agent进行相互作用的复杂适应系统之中.通过设计体育赛事申办决策专家系统的原型,进行了专家系统推理模型的验证.原型运行结果表明:基于Multi-Agent的专家系统推理模型结构能够有效地提高专家系统知识获取的适应性.这为研究更加接近人脑智能的专家系统提供了崭新的研究思路.
Abstract:
The traditional expert system reasoning model structure has poor adaptability in acquiring knowledge. From the viewpoint of system science, the complex adaptive system theory is used to improve the structure and operation mechanism of a traditional expert system. Firstly, an Agent was introduced to simulate neurons in the human brain and load the knowledge interacting in the expert system reasoning model. Then an expert system reasoning model of complex adaptation was constructed based on the Multi-Agent interaction. Consequently, the knowledge acquiring mechanism, knowledge base and reasoning engine were unified into the Agents interaction in the complex adaptive expert system. Finally, by designing the expert system reasoning model prototype in decision-making of international sporting events bidding, the effectiveness of the expert system reasoning model based on Agent was verified. The results of the prototype running show that the expert system reasoning structure based on Multi-Agent model can effectively improve the adaptability of expert system knowledge acquisition. That provides a new idea for studying the expert system closer to human intelligence.

参考文献/References:

[1]史忠植,王文杰.人工智能[M].北京:国防工业出版社,2007: 21-30.
[2]邵艳华,张明生.一类复杂适应系统的建模研究[J].计算机工程, 2012, 38(1): 253-255.
 SHAO Yanhua, ZHANG Mingsheng. Research on a class of complex adaptive system modeling[J]. Computer Engineering, 2012, 38(1): 253-255.
[3]韩业红.基于粗集理论的专家系统中知识的获取、更新与推理[D].济南:山东师范大学, 2007: 29-35.
HAN Yehong. Knowledge acquisition, modification and reasoning in expert system based on rough set theory[D].Ji’nan: Shandong Normal University, 2007: 29-35.
[4]钟秀琴,符红光,佘莉,等.基于本体的几何学知识获取及知识表示[J].计算机学报, 2010, 33(1): 167-174.
 ZHONG Xiuxin, FU Hongguang, SHE Li, et al. Geometry knowledge acquisition and representation on ontology[J]. Chinese Journal of Computers, 2010, 33(1): 167-174.
[5]陈明亮,李怀祖.基于规则的专家系统中不确定性推理的研究[J].计算机工程与应用, 2000(5): 50-53.
 CHEN Mingliang, LI Huaizhu. Study on the non-accurate inference in expert system based on rule[J]. Computer Engineering and Application, 2000(5): 50-53.
[6]曹珊, 贺正洪. 基于神经网络的专家系统研究及应用[J]. 战术导弹控制技术, 2007, 56(1): 52-55.
 CHAO Shan, HE Zhenghong. Application of expert system based on artificial neural network[J]. Control Technology of Tactical Missile, 2007, 56(1): 52-55.
[7]徐敏,施化吉.基于神经网络集成的专家系统模型[J].计算机工程与设计, 2006, 27(7):1216-1220.
 XU Min, SHI Huaji. Expert system model based on neural network ensembles[J]. Computer Engineering and Design, 2006, 27(7): 1216-1220.
[8]巩文科,李心广,赵洁.基于BP神经网络与专家系统的故障诊断系统[J].计算机工程, 2007, 33(8): 199-203.
GONG Wenke, LI Xinguang, ZHAO Jie. Fault diagnosis system based on BP neural network and expert system[J]. Computer Engineering, 2007, 33(8): 199-203.
[9]陈德礼, 程羽. 基于神经网络和规则的专家系统的应用研究[J]. 计算机工程与科学, 2004, 26(6): 70-75.
 CHEN Deli, CHENG Yu. Application research of the ESs based on neural networks and rules[J]. Computer Engineering & Science, 2004, 26(6): 70-75.
[10]陈禹. 复杂性研究的新动向—基于主体的建模方法及其启迪[J]. 系统辨证学学报, 2003, 11(1): 43-50.
 CHEN Yu. A new trend in complexity studies—Agent based modelling and its implication[J]. Journal of Systemic Dialectics, 2003, 11(1): 43-50.
[11]陶倩,徐福缘,黄平. 基于Agent的计算金融学建模方法研究[J].系统仿真学报, 2008, 20(11): 3004-3007.
 TAO Qian, XU Fuyuan, HUANG Ping. Agent-based computational finance modeling[J]. Journal of System Simulation, 2008, 20(11): 3004-3007.
[12]金士尧, 黄红兵, 范高俊. 面向涌现的多Agent系统研究及其进展[J].计算机学报, 2008, 31(6): 881-895. JIN Shiyao, HUANG Hongbing, FAN Gaojun. Emergence-oriented research on multi-agent systems and its state of arts[J]. Chinese Journal of Computers, 2008, 31(6): 881-895.
[13]Agent based modeling[EB/OL]. [2012-08-13]. http://www.cadrc.calpoly.edu/pdf/JSVoss_120400.pdf.
[14]ROBERT A. Advancing the art of simulation in the social sciences[J]. Complexity Magazine, 1987, 3(2): 189-194.
[15]CLAUDIA P W, EBENOTH E. An adaptive toolbox model: a pluralistic modelling approach for human behaviour based on observation[J]. Journal of Artificial Societies and Social Simulation, 2004, 7(1): 176-181.
[16]BOERO R. Some methodological issues of agent based models in social sciences[EB/OL]. [2012-07-26].http://www.unisi.it/santachiara/aree/conf_phd_econ2003/conference_ siena/papers/boero.pdf.
[17]SUN R, NAVEH I. Simulating organizational decision-making using a cognitively realistic Agent model[J]. Journal of Artificial Societies and Social Simulation, 2004, 7(3): 253-258. 
[18]TESTATSION L. Agent-based computational economics: growing economies from the bottom up[J]. Artificial Life, 2002, 8(1): 55-82.
[19]PIERRE M J, CHRISTINE B, GABRIEL L, et al. Bio-inspired mechanisms for artificial self-organized systems[J]. Informatica, 2006, 30(1): 55-62.
 [20]WAGNER G, TULBA F. Agent-oriented modeling and Agent-based simulation[C]//Proceedings of 5th Int Workshop on Agent-Oriented Information Systems(AOIS-2003).[S.l.]: Springer-Verlag, 2003: 57-63.
[21]MILLER J H, PAGE S E. Complex adaptive systems: an introduction to computational models of social life[M]. Princeton, USA: Princeton University Press, 2007: 25-28.

相似文献/References:

[1]柯 佳,程显毅,李晓薇.基于用户反馈的智能合作过滤模型的研究[J].智能系统学报,2007,2(01):59.
 KE Jia,CHENG Xian-yi,LI Xiao-wei.Research of Agent collaborative filtering model based on user′s feedback[J].CAAI Transactions on Intelligent Systems,2007,2(02):59.
[2]曲国华,张振华,徐岭,等.多Agent的复杂经济仿真系统构建策略[J].智能系统学报,2016,11(2):163.[doi:10.11992/tis.201509019]
 QU Guohua,ZHANG Zhenhua,XU Ling,et al.A strategy to construct multi-Agent-based complex economic simulation systems[J].CAAI Transactions on Intelligent Systems,2016,11(02):163.[doi:10.11992/tis.201509019]
[3]郭艳燕,童向荣,张楠,等.基于演化博弈论的网络信息传播群体行为分析[J].智能系统学报,2016,11(4):487.[doi:10.11992/tis.201606001]
 GUO Yanyan,TONG Xiangrong,ZHANG Nan,et al.Analysis of network information propagation population behavior based on evolutionary game theory[J].CAAI Transactions on Intelligent Systems,2016,11(02):487.[doi:10.11992/tis.201606001]
[4]毛莉娜,李卫华.利用智能引导和KDML增强可拓模型人机建模能力研究[J].智能系统学报,2017,12(03):348.[doi:10.11992/tis.201610017]
 MAO Lina,LI Weihua.Research on enhancing the human-machine modeling ability for an extension model using the intelligent guide and KDML[J].CAAI Transactions on Intelligent Systems,2017,12(02):348.[doi:10.11992/tis.201610017]

备注/Memo

备注/Memo:
收稿日期:2012-10-21.
网络出版日期:2013-04-09. 
基金项目:国家“973”计划资助项目(2013CB329502);国家“863”计划资助项目(2012AA011003);国家自然科学基金资助项目(61035003, 61202212, 60933004);国家科技支撑计划资助项目(2012BA107B02).
通信作者:陶倩.
E-mail: taoqian_101010@163.com.
作者简介:
陶倩,女,1966年生,副教授,主要研究方向为复杂适应系统建模、智能信息处理.曾主持和参与省部级科研项目,以及横向课题项目多项.发表学术论文多篇,其中2篇被EI检索.
马刚,男,1986年生,硕士研究生,主要研究方向为机器学习、数据挖掘、神经计算.曾参与国家“973”项目子课题、国家自然科学基金项目以及其他横向课题的研究,完成了多个基于多智能体专家系统的研发工作.
史忠植,男,1941年生,研究员,博士生导师.主要研究方向为智能科学、人工智能、机器学习、知识工程等.1979年、1998年、2001年均获中国科学院科技进步二等奖,1994年获中国科学院科技进步特等奖,2002年获国家科技进步二等奖.发表学术论文400余篇,出版专著15部.
更新日期/Last Update: 2013-05-26