[1]文益民,强保华,范志刚.概念漂移数据流分类研究综述[J].智能系统学报,2013,8(2):95-104.[doi:10.3969/j.issn.1673-4785.201208012]
 WEN Yimin,QIANG Baohua,FAN Zhigang.A survey of the classification of data streams with concept drift[J].CAAI Transactions on Intelligent Systems,2013,8(2):95-104.[doi:10.3969/j.issn.1673-4785.201208012]
点击复制

概念漂移数据流分类研究综述

参考文献/References:
[1]MITCHELL T M. Machine learning[M]. New York: McGraw-Hill, 1997: 15-37.
 [2]SCHLIMMER J,GRANGER R. Incremental learning from noisy data[J]. Machine Learning, 1986, 1(3): 317-354.
[3]GROSSBERG S. Nonlinear neural networks: principles, mechanisms and architecture[J]. Neural Network, 1988, 1(1): 17-61.
[4]KUNCHEVA L I. Classifier ensembles for changing environments[C]//Proceedings of the Fifth Workshop on Multiple Classifier Systems. Cagliari, Italy, 2004: 1-15.
 [5]TSYMBAL A. The problem of concept drift: definitions and related work. TCD-CS-2004-15[R]. Dublin: Department of Computer Science Trinity College, 2004.
 [6]王涛, 李舟军, 颜跃进, 等. 数据流挖掘分类技术综述[J]. 计算机研究与发展, 2007, 44(11): 1809-1815.
 WANG Tao, LI Zhoujun, YAN Yuejin, et al. A survey of classification of data streams[J]. Journal of Computer Research and Development, 2007, 44(11): 1809-1815.
[7]LIOBAITI. Learning under concept drift: an overview[EB/OL].[2012-01-12].http://zliobaite.googlepages.com/Zliobaite_CDoverview.pdf.
[8]HOENS T R, POLIKAR R, CHAWLA N V. Learning from streaming data with concept drift and imbalance: an overview[J]. Progress in Artificial Intelligence, 2012, 1(1): 89-101.
[9]GAMA J. A survey on learning from data streams: current and future trends[J]. Progress in Artificial Intelligence, 2012, 1(1): 45-55.
[10]OVERPECK J T, MEEHL G A, BONY S, et al. Climate data challenges in the 21st century[J]. Science, 2011, 331(6018): 700-702.
 [11]STREET W N, KIM Y S. A streaming ensemble algorithm (SEA) for large-scale classification[C]//Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001: 377-382.
[12]ANGLUIN D. Queries and concept learning[J]. Machine Learning, 1988, 2(4): 319-342.
[13]DOMINGOS P, HULTEN G. Mining high-speed data stream[C]//Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Boston, USA, 2000: 71-80.
[14]HULTEN G, SPENCER L, DOMINGOS P. Mining time-changing data streams[C]//Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001: 97-106.
[15]WIDMER G, KUBAT M. Effective learning in dynamic environments by explicit context tracking[C]//Proceedings of the Sixth European Conference on Machine Learning. Vienna, Austria, 1993: 69-101.
 [16]KELLY M, HAND D, ADAMS N. The impact of changing populations on classifier performance[C]//Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining. San Diego, USA, 1999: 367-371.
[17]NARASIMHAMURTHY A, KUNCHEVA L I. A framework for generating data to simulate changing environments[C]//Proceedings of the 25th IASTED International Multi-Conference: Artificial Intelligence and Applications. Innsbruck, Austria, 2007: 384-389.
[18]MINKU L L, WHITE A P, YAO X. The impact of diversity on online ensemble learning in the presence of concept drift[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(5): 730-742.
[19]ELWELL R, POLIKAR R. Incremental learning of concept drift in nonstationary environments[J]. IEEE Transactions on Neural Networks, 2011, 22(10): 1517-1531.
[20]MASUD M, GAO J, KHAN L, et al. Integrating novel class detection with classification for concept-drifting data streams[C]//Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases. Bled, Slovenia, 2009: 79-94. 
[21]MORENO-TORRES J G, RAEDER T, ALAIZ-RODRIGUEZ R. A unifying view on dataset shift in classification[J]. Pattern Recognition, 2012, 45: 521-530.
[22]KILANDER F, JANSSON C. COBBIT—a control procedure for COBWEB in the presence of concept drift[C]//Proceedings of the Sixth European Conference on Machine Learning. Helsinki, Finland, 1993: 244-261. 
[23]BLACK M, HICKEY R J. Maintaining the performance of a learned classifier under concept drift [J]. Intelligent Data Analysis, 1999, 3(6): 453-474.
[24]KUN A, PETSCHE T, RIVEST R L. Learning time-varying concepts[C]//Proceedings of the Conference Neural Information Processing Systems. Denver, USA, 1990: 183-189.
[25]HELMBOLD D P, LONG P M. Tracking drifting concepts by minimizing disagreements[J]. Machine Learning, 1994, 14(1): 27-45.
[26]BARVE R D, LONG P M. On the complexity of learning from drifting distributions[C]//Proceedings of the Ninth Annual Conference on Computational Learning Theory. Desenzano Sul Garda, Italy, 1996: 122-130.
[27]DIETTERICH T, WIDMER G, KUBAT M. Special issue on context sensitivity and concept drift[J]. Machine Learning, 1998, 32(2): 83-201.
[28]WANG H, FAN W, YU P S, et al. Mining concept-drifting data streams using ensemble classifiers[C]//Proceedings of the Ninth International Conference on Knowledge Discovery and Data Mining. Washington, DC, USA, 2003: 226-235.
 [29]KOLTER J Z, MALOOF M A. Dynamic weighted majority: a new ensemble method for tracking concept drift [C]// Proceedings of the Third IEEE International Conference on Data Mining. Washington, DC, USA, 2003: 123-130. 
[30]KOLTER J Z, MALOOF M A. Using additive expert ensembles to cope with concept drift[C]//Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany, 2005: 449-456.
[31]BIFET A, HOLMES G, PFAHRINGER B, et al. New ensemble methods for evolving data streams[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 139-148.
 [32]KLINKENBERG R. Using labeled and unlabeled data to learning drifting concepts[C]//Proceedings of the Workshop Notes of the IJCAI-01 Workshop on Learning from Temporal and Spatial Data. Menlo Park, USA , 2001: 16-24.
[33]KLINKENBERG R. Detection concept drift with support vector machines[C]//Proceedings of the Seventeenth International Conference on Machine Learning. Stanford, California, USA, 2000: 487-494.
[34]LANQUILLON C. Information filtering in changing domains[C]//Proceedings of the 16th International Joint Conference on Artificial Intelligence. Stockholm, Sweden, 1999: 41-48.
[35]KUBAT G, GAMA J, UTGOFF P. Special issue on incremental learning systems capable of dealing with concept drift[Z]. Amsterdam: Intelligent Data Analysis, 2004.
[36]GAO J, DING B, FAN W, et al. Classifying data stream with skewed class distributions and concept drifts[J]. IEEE Transactions on Internet Computing, 2008, 12(6): 37-49 .
[37]CHEN S, HE H. SERA: selectively recursive approach towards nonstationary imbalanced stream data mining[C]//Proceedings of the 2009 International Joint Conference on Neural Networks. Atlanta, USA, 2009: 522-529.
[38]CHEN S, HE H, LI K, et al. MuSeRA: multiple selectively recursive approach towards nonstationary imbalanced stream data mining[C]//Proceedings of the 2010 International Joint Conference on Neural Networks. Barcelona, Spain, 2010: 1-8.
[39]CHEN S, HE H. Towards incremental learning of nonstationary imbalanced data stream: a multiple selectively recursive approach[J]. Evolving Systems, 2010, 2(1): 35-50.
[40]LICHTENWALTER R N, CHAWLA N V. Adaptive methods for classification in arbitrarily imbalanced and drifting data streams[C]//Proceedings of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Bangkok, Thailand, 2009: 53-75.
[41]GREGORY D, ROBI P. An ensemble based incremental learning framework for concept drift and class imbalance[C]//Proceedings of the 2010 International Joint Conference on Neural Networks. Barcelona, Spain, 2010: 9-17.
[42]ZHANG J, HU X, ZHANG Y, et al. An efficient ensemble method for classifying skewed data streams[C]//Proceedings of the 7th International Conference on Intelligent Computing. Zhengzhou, China, 2011: 144-151.
[43]RAMAMURTHY S, BHATNAGAR R. Tracking recurrent concept drift in streaming data using ensemble classifiers[C]//Proceedings of the 6th International Conference on Machine Learning and Applications. Cincinnati, USA, 2007: 404-409.
[44]LI P P, WU X D, HU X G. Mining recurring concept drifts with limited labeled streaming data[C]//Proceedings of the 2th Asian Conference on Machine Learning. Tokyo, Japan, 2010: 241-252.
[45]MASUD M M, AL-KHATEEB T M, KHAN L, et al. Detecting recurring and novel classes in concept-drifting data streams[C]//Proceedings of the 2011 International Conference on Data Mining. Vancouver, Canada, 2011: 1176-1181.
[46]XUE J C, WEISS G M. Quantification and semi-supervised classification methods for handling changes in class distribution[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 897-906.
 [47]ZHANG P, ZHU X, GUO L. Mining data streams with labeled and unlabeled training examples[C]//Proceedings of the Ninth IEEE International Conference on Data Mining. Miami, USA, 2009: 627-636.
[48]LI P, WU X D, HU X G. Learning from concept drift data streams with unlabeled data[C]//Proceedings of the 24th AAAI Conference on Artificial Intelligence. Atlanta, USA, 2010: 1945-1946.
[49]FAN W, HUANG Y, WANG H, et al. Active mining of data streams[C]//Proceedings of the 4th SIAM International Conference on Data Mining. Lake Buena Vista, USA, 2004: 457-461.
[50]ZHU X, ZHANG P, LIN X. Active learning from stream data using optimal weight classifier ensemble[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40(6): 1607-1621.
[51]MASUD M, GAO J, KHAN L, et al. Classification and novel class detection in data streams with active mining[C]//Proceedings of the 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Hyderabad, India, 2010: 311-324.
[52]ZLIOBAITE I, BIFET A, PFAHRINGER B, et al. Active learning with evolving streaming data[C]//Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Athens, Greece, 2011, 11: 597-612.
[53]CHU W, ZINKEVICH M, LI L, et al. Unbiased online active learning in data streams[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, USA, 2011: 195-203.
[54]KHOLGHI M, KEYVANPOUR M R. Active learning framework combining semi-supervised approach for data stream mining[J]. Intelligent Computing and Information Science, 2011, 135: 238-243.
[55]FORMAN G. Tackling concept drift by temporal inductive transfer[C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Toronto, Canada, 2006: 252-259.
[56]BEN D S, BORBELY R S. A notion of task relatedness yielding provable multiple-task learning guarantees[J]. Machine Learning, 2008, 73(3): 273-287.
[57]FOLINO G, PAPUZZO G. Handling different categories of concept drifts in data streams using distributed GP[C]//Berlin: Springer-Verlag, 2010: 74-85.
[58]YANG S, YAO X. Population-based incremental learning with associative memory for dynamic environments[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(5): 542-561.
[59]WENERSTROM B, GIRAUD-CARRIER C. Temporal data mining in dynamic feature spaces[C]//Proceedings of the 2006 International Conference on Data Mining. Las Vegas, USA, 2006: 1141-1145.
 [60]CHEN H L, CHEN M S, LIN S C. Catching the trend: a framework for clustering concept-drifting categorical data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(5): 652-665.
[61]MASUD M, GAO J, KHAN L, et al. Classification and novel class detection in concept-drifting data streams under time constraints[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(6): 859-874. 
[62]ZHANG P, LI J, WANG P, et al. Enabling fast prediction for ensemble models on data streams[C]// Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, USA, 2011: 177-185.
[63]KOREN Y. Collaborative filtering with temporal dynamics[J]. Communications of the ACM, 2010, 53(4): 89-97.
[64]KLINKENBERG R, JOACHIMS T. Detecting concept drift with support vector machines[C]//Proceedings of the 17th International Conference on Machine Learning. San Francisco, USA, 2000: 487-494.
[65]WIDMER G, KUBAT M. Learning in the presence of concept drift and hidden contexts[J]. Machine Learning, 1996, 23(1): 69-101.
[66]FAN W. Systematic data selection to mine concept-drifting data streams[C]//Proceedings of the Tenth International Conference on Knowledge Discovery and Data Mining. Seattle, USA, 2004: 128-137.
[67]SALGANICOFF M. Tolerating concept and sampling shift in lazy learning using prediction error context switching[J]. Artificial Intelligence Review, 1997, 11(1/2/3/4/5): 133-155.
[68]LIOBAITI. Combining similarity in time and space for training set formation under concept drift[J]. Intelligent Data Analysis, 2011, 15(4): 589-611.
[69]KLINKENBERG R. Learning drifting concepts: example selection vs. example weighting[J]. Intelligent Data Analysis, 2004, 8(3): 200-281. 
[70]KOYCHEV I. Gradual forgetting for adaption to concept drift[C]//Proceedings of the ECAI 2000 Workshop Current Issue in Spatio-Temporal Reasoning. Berlin, Germany, 2000: 101-106.
[71]OOMMEN J, RUEDA L. Stochastic learning-based weak estimation of multinomial random variables and its applications to pattern recognition in non-stationary environments[J]. Pattern Recognition, 2006, 39(3): 328-341.
[72]NUNEZ M, FIDALGO R, MORALES R. Learning in environments with unknown dynamics towards more robust concept learners[J]. Journal of Machine Learning Research, 2007, 8: 2595-2628.
[73]KYOSUKE N, KOICHIRO Y, TAKASHI O. ACE: adaptive classifier-ensemble system for concept-drifting environments[C]//Proceedings of the 6th International Workshop on Multiple Classifier Systems. Heidelberg, Germany, 2005: 176-185.
[74]MUHLBAIER M D, POLIKAR R. Multiple classifiers based incremental learning algorithm for learning in nonstationary environments[C]//Proceedings of the 6th IEEE International Conference on Machine Learning and Cybernetics. Hong Kong, China, 2007: 3618-3623.
[75]文益民, 王耀南, 张莹. 基于可信多数投票的快速概念漂移检测[J]. 湖南大学学报:自然科学版, 2010, 37(6): 36-40.
WEN Yimin, WANG Yaonan, ZHANG Ying. Fast detection of concept drifts based on confident majority voting[J]. Journal of Hunan University:Natural Sciences, 2010, 37(6): 36-40.
[76]关菁华, 刘大有. 一种挖掘概念漂移数据流的选择性集成算法[J]. 计算机科学, 2010, 37(1): 204-207. G
UAN Jinghua, LIU Dayou. Selected ensemble of classifiers for handling concept-drifting data streams[J]. Computer Science, 2010, 37(1): 204-207.
[77]朱群, 张玉红, 胡学钢, 等. 一种基于双层窗口的概念漂移数据流分类算法[J]. 自动化学报, 2011, 37(9): 1078-1083.
ZHU Qun, ZHANG Yuhong, HU Xuegang, et al. A double-window-based classification algorithm for concept drifting data streams[J]. Acta Automatica Sinica, 2011, 37(9): 1078-1083.
[78]孙岳, 毛国君, 刘旭, 等. 基于多分类器的数据流中的概念漂移挖掘[J]. 自动化学报, 2008, 34(1): 93-97.
 SUN Yue, MAO Guojun, LIU Xu, et al. Mining concept drifts from data streams based on multi-classifiers[J]. Acta Automatica Sinica, 2008, 34(1): 93-97.
[79]辛轶, 郭躬德, 陈黎飞, 等. IKnnM-DHecoc:一种解决概念漂移问题的算法[J]. 计算机研究与发展, 2011, 48(4): 592-601.
 XIN Yi, GUO Gongde, CHEN Lifei, et al. IKnnM-DHecoc: a method for handling the problem of concept drift[J]. Journal of Computer Research and Development, 2011, 48(4): 592-601.
[80]KUNCHEVA L I, ZLIOBAITE I. On the window size for classification in changing environments[J]. Intelligent Data Analysis, 2009, 13 (6): 314-323.
[81]MINKU L L, YAO X. DDD: a new ensemble approach for dealing with concept drift[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(4): 619-633.
[82]KLINKENBERG R, RENZ I. Adaptive information filtering: learning in the presence of concept drifts[C]// Proceedings of the Workshop of the AAAI-98/ICML-98 on Learning for Text Categorization. Madison, USA, 1998: 33-40.
[83]LAST M. Online classification of nonstationary data streams [J]. Intelligent Data Analysis, 2002, 6 (2): 1-16.
[84]GAMA J, MEDAS P, CASTILLO G, et al. Learning with drift detection[C]//Proceedings of the 17th Brazilian Symposium on Artificial Intelligence. Sao Luís, Brazil, 2004: 286-295.
[85]NISHIDA K, YAMAUCHI K. Detecting concept drift using statistical testing[C]//Proceedings of the 10th International Conference on Discovery Science. Sendai, Japan, 2007: 264-269.
[86]罗秀, 王大玲, 冯时, 等. 一种面向周期性概念漂移的数据流分类算法[J]. 计算机研究与发展, 2009, 46(Suppl): 400-405. LUO Xiu, WANG Daling, FENG Shi, et al. An algorithm for classifying data stream with recurrent concept drift[J]. Journal of Computer Research and Development, 2009, 46(Suppl.): 400-405. 
[87]KATAKIS I, TSOUMAKAS G, VLAHAVAS I. Tracking recurring contexts using ensemble classifiers: an application to email filtering[J]. Knowledge and Information Systems, 2010, 22(3): 371-391.
[88]ALIPPI C, ROVERI M. Just-in-time adaptive classifiers—part I: detecting nonstationary changes[J]. IEEE Transactions on Neural Networks, 2008, 19(7): 1145-1153.
[89]ALIPPI C, ROVERI M. Just-in-time adaptive classifiers—part II: designing the classifier[J]. IEEE Transactions on Neural Networks, 2008, 19(12): 2053-2064.
[90]ALIPPI C, BORACCHI G, ROVERI M. An effective just-in-time adaptive classifier for gradual concept drifts[C]//Proceedings of the 2011 International Joint Conference on Neural Networks. San Jose, USA, 2011: 1675-1681.
[91]PETER V,ABRANHAM B. Entropy-based concept drift detection[C]//Proceedings of the 6th International Conference on Data Mining. Hong Kong, China, 2006: 1113-1118.
[92]KUNCHEVA L. Change detection in streaming multivariate data using likelihood detectors[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 6(1): 1-7.
[93]KUBAT M. To load balancing in computer networks[J]. International Journal of Cybernetics and System, 1992, 23(3/4): 389-400.
[94]COHEN L, AVRAHAMI-BAKISH G, LAST M, et al. Real-time data mining of non-stationary data streams from sensor networks[J]. Information Fusion, 2008, 9(3): 344-353.
[95]HARRIES M, HORN K. Detecting concept drift in financial time series prediction using symbolic machine learning[C]//Proceedings of the Eighth Australian Joint Conference on Artificial Intelligence. Canberra, Australia, 1995: 91-98.
[96]MOVELLAN J R, MINEIRO P. Robust sensor fusion: analysis and application to audio visual speech recognition[J]. Machine Learning, 1998, 32(2): 85-100.
[97]BERNSTEIN A, VORBURGER P, EGGER P. A scenario-based approach for direct interruptability prediction on wearable devices[J]. International Journal of Pervasive Computing and Communications, 2008, 3(4): 426-438.
相似文献/References:
[1]富春岩,葛茂松.一种能够适应概念漂移变化的数据流分类方法[J].智能系统学报,2007,2(4):86.
 FU Chun-yan,GE Mao-song.A data stream classification methods adaptive to concept drift[J].CAAI Transactions on Intelligent Systems,2007,2():86.
[2]史荧中,王士同,邓赵红,等.基于核心向量机的多任务概念漂移数据快速分类[J].智能系统学报,2018,13(6):935.[doi:10.11992/tis.201712019]
 SHI Yingzhong,WANG Shitong,DENG Zhaohong,et al.The core vector machine-based rapid classification of multi-task concept drift dataset[J].CAAI Transactions on Intelligent Systems,2018,13():935.[doi:10.11992/tis.201712019]
[3]张本才,王志海,孙艳歌.一种多样性和精度加权的数据流集成分类算法[J].智能系统学报,2019,14(1):179.[doi:10.11992/tis.201806021]
 ZHANG Bencai,WANG Zhihai,SUN Yange.An ensemble classification algorithm based on diversity and accuracy weighting for data streams[J].CAAI Transactions on Intelligent Systems,2019,14():179.[doi:10.11992/tis.201806021]

备注/Memo

收稿日期:2012-08-07.
网络出版日期:2012-11-16. 
基金项目:湖南省自然科学基金资助项目(10JJ5067);湖南省科技计划资助项目(2010GK3047);广西省可信软件重点实验室(桂林电子科技大学)开放课题资助项目(KX201118). 
通信作者:文益民.
E-mail:ymwen2004@yahoo.com.cn.
作者简介:
文益民,男,1969 年生,教授,硕士生导师,博士,CCF高级会员,主要研究方向为机器学习与数据挖掘、极化SAR图像处理、社会计算.获得省部级教学、科研奖励5项,主持省部级科研项目8项,发表学术论文30余篇,〖LL〗其中被SCI、EI检索18篇,翻译译著1部.
强保华,男,1972年生,教授,硕士生导师,博士,主要研究方向为Web信息处理、智能搜索、海量信息处理、网络信息集成.获西南大学教学成果奖果三等奖1项,主持国家自然科学基金及省部级科研项目共8项.发表学术论文20余篇,其中被EI检索12篇,翻译译著1部.
范志刚,男,1978年生,副研究员,博士,主要研究方向为大规模数据挖掘和机器学习及其高性能分布式计算.曾主持中科院重点部署项目等科研项目.发表学术论文14篇,其中被SCI、EI检索10篇.

更新日期/Last Update: 2013-05-26
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134