[1]陶新民,徐鹏,刘福荣,等.组合分布估计和差分进化的多目标优化算法[J].智能系统学报,2013,8(01):39-45.[doi:10.3969/j.issn.1673-4785.201208035]
 TAO Xinmin,XU Peng,LIU Furong,et al.Multi objective optimization algorithm composed of estimation of distribution and differential evolution[J].CAAI Transactions on Intelligent Systems,2013,8(01):39-45.[doi:10.3969/j.issn.1673-4785.201208035]
点击复制

组合分布估计和差分进化的多目标优化算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第8卷
期数:
2013年01期
页码:
39-45
栏目:
出版日期:
2013-03-25

文章信息/Info

Title:
Multi objective optimization algorithm composed of estimation of distribution and differential evolution
文章编号:
1673-4785(2013)01-0039-07
作者:
陶新民 1徐鹏 1刘福荣 2张冬雪 1
1.哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001;
 2.黑龙江省电力有限公司 科信处,黑龙江 哈尔滨 150090
Author(s):
TAO Xinmin 1 XU Peng 1 LIU Furong 2 ZHANG Dongxue 1
1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;
2. Science and Information Department, Heilongjiang Electric Power Company Limited, Harbin 150090, China
关键词:
多目标优化分布估计算法差分进化算法
Keywords:
multi objective optimization estimation of distribution algorithm differential evolution algorithm
分类号:
TP18
DOI:
10.3969/j.issn.1673-4785.201208035
文献标志码:
A
摘要:
为了提高多目标优化算法的收敛能力及求解精度,提出了一种组合分布估计和差分进化的多目标优化算法.该方法用分布估计算法和差分进化算法共同生成种群中的粒子,利用选择因子来控制每个粒子的产生方式,并且根据迭代次数的增加来改变2种算法的使用比例,搜索初期利用分布估计算法进行快速定位,然后用差分进化算法进行精确搜索.并对差分进化算法的变异因子进行了改进,定义了一个可变的变异因子,来控制不同搜索时期中差分进化算法的变异范围.用4个测试函数对算法进行了仿真测试,并同NSGA Ⅱ和RM MEDA进行了比较.实验结果表明,该算法具有良好的收敛性和分布性,并且效果稳定.
Abstract:
In order to improve the ability of convergence and accuracy of a multi objective optimization algorithm, a multi objective optimization algorithm composed of estimation of distribution and differential evolution has been proposed. Both estimation of distribution algorithm and differential evolution algorithm will be used to generate particles of population. The generation method of each particle has been decided by using a selective factor, and proportion of the use of two algorithms according to the frequency of iterations. Utilizing an estimation of distribution algorithm to quickly locate in the initial search, and then differential evolution algorithm was used for accurately conducting searches. The variation factor of differential evolution algorithm was improved, and a variable variation factor also was defined and used to control the range of variation of differential evolution algorithm in different search periods. Four test functions were used to evaluate the performance of the proposed algorithm, and next the proposed algorithm was compared with nondominated sorting genetic algorithm II (NSGA II) and regularity model based multiobjective estimation of distribution algorithm (RM MEDA). The experimental results show that the proposed algorithm displayed a good convergence, diversity performance, and the stable effects.

参考文献/References:

[1]周树德,孙增圻.分布估计算法综述[J].自动化学报, 2007, 33(2): 113-124. 
ZHOU Shude, SUN Zengqi. A survey on estimation of distribution algorithms[J]. Acta Automatica Sinica, 2007, 33(2): 113-124.
[2]KHAN N, GOLDBERG D E, PELIKAN M. Multi objective Bayesian optimization algorithm[R]. Urbana, USA: University of Illinois at Urbana Champaign, 2002.
[3]OKABE T, JIN Y, SENDHOFF B, et al. Voronoi based estimation of distribution algorithm for multi objective optimization[C]//Proceedings of the 2004 Congress on Evolutionary Computation. Piscataway, USA, 2004: 1594-1601.
[4]SASTRY K, PELIKAN M, GOLDBERG D E. Decomposable problems, niching, and scalability of multiobjective estimation of distribution algorithms[R]. Urbana, USA: University of Illinois at Urbana Champaign, 2005.
[5]ZHANG Qingfu, ZHOU Aimin, JIN Yaochu. RM MEDA: a regularity model based multiobjective estimation of distribution algorithm[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 41-63.
[6]程玉虎,王雪松,郝名林.一种多样性保持的分布估计算法[J].电子学报, 2010, 38(3): 591-597. 
CHENG Yuhu, WANG Xuesong, HAO Minglin. An estimation of distribution algorithm with diversity preservation[J]. Acta Electronica Sinica, 2010, 38(3): 591-597.
[7]STORN R, PRICE K. Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[8]ROBIC T, FILIPIC B. DEMO: differential evolution for multiobjective optimization[C]//Proceedings of the 3rd International Conference on Evolutionary Multi Criterion Optimization. Berlin, Germany: Springer, 2005: 520-533.
[9]牛大鹏,王福利,何大阔,等.多目标混沌差分进化算法[J].控制与决策, 2009, 24(3): 361-370. NIU Dapeng, WANG Fuli, HE Dakuo, et al. Chaotic differential evolution for multiobjective optimization[J]. Control and Decision, 2009, 24(3): 361-370.
[10]ZHAO Mengling, LIU Ruochen, LI Wenfeng, et al. Multi objective optimization based differential evolution constrained optimization algorithm[C]//Proceedings of 2010 Second WRI Global Congress on Intelligent Systems. Piscataway, USA, 2010: 320-326.
[11]李丽蓉,高卫峰.混合差分进化算法[J].计算机工程与设计, 2012, 33(6): 2446 2450. LI Lirong, GAO Weifeng. Hybrid differential evolution algorithm[J]. Computer Engineering and Design, 2012, 33(6): 2446-2450.
[12]陶新民,刘玉,付丹丹,等.混合变异克隆选择多目标优化算法[J].计算机仿真, 2011, 28(10): 199-203. 
TAO Xinmin, LIU Yu, FU Dandan, et al. Hybrid mutation clonal selection multiobjective optimization algorithm[J]. Computer Simulation, 2011, 28(10): 199-203.
[13]TSUTSUI S, PELIKAN M, GOLDBERG D E. Probabilistic model building genetic algorithms using marginal histograms in continuous domain[C]//Proceedings of the 5th International Conference on Knowledge Based Intelligent Information Engineering Systems and Allied Technology. Amsterdam, The Netherlands, 2001: 112-121.
[14]DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[15]ZITZLER E, DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms: empirical results[J]. Evolutionary Computation, 2000, 8(2): 173-195.

相似文献/References:

[1]王 艳,曾建潮.多目标微粒群优化算法综述[J].智能系统学报,2010,5(05):377.[doi:10.3969/j.issn.1673-4785.2010.05.001]
 WANG Yan,ZENG Jian-chao.A survey of a multiobjective particle swarm optimization algorithm[J].CAAI Transactions on Intelligent Systems,2010,5(01):377.[doi:10.3969/j.issn.1673-4785.2010.05.001]
[2]秦全德,程适,李丽,等.人工蜂群算法研究综述[J].智能系统学报,2014,9(02):127.[doi:10.3969/j.issn.1673-4785.201309064]
 QIN Quande,CHENG Shi,LI Li,et al.Artificial bee colony algorithm: a survey[J].CAAI Transactions on Intelligent Systems,2014,9(01):127.[doi:10.3969/j.issn.1673-4785.201309064]
[3]张伟,乔俊飞.神经网络的污水处理过程多目标优化控制方法[J].智能系统学报,2016,11(5):594.[doi:10.11992/tis.201512022]
 ZHANG Wei,QIAO Junfei.Multi-objective optimization control for wastewatertreatment processing based on neural network[J].CAAI Transactions on Intelligent Systems,2016,11(01):594.[doi:10.11992/tis.201512022]
[4]屠传运,陈韬伟,余益民,等.膜系统下的一种多目标优化算法[J].智能系统学报,2017,12(05):678.[doi:10.11992/tis.201706013]
 TU Chuanyun,CHEN Taowei,YU Yimin,et al.Multi-objective optimization algorithm based on membrane system[J].CAAI Transactions on Intelligent Systems,2017,12(01):678.[doi:10.11992/tis.201706013]
[5]孟勤超,杨翠丽,乔俊飞.基于改进SPEA2算法的给水管网多目标优化设计[J].智能系统学报,2018,13(01):118.[doi:10.11992/tis.201701012]
 MENG Qinchao,YANG Cuili,QIAO Junfei.Multi-objective optimization design of water distribution systems based on improved SPEA2 algorithm[J].CAAI Transactions on Intelligent Systems,2018,13(01):118.[doi:10.11992/tis.201701012]
[6]林燕清,傅仰耿.基于NSGA-II的扩展置信规则库激活规则多目标优化方法[J].智能系统学报,2018,13(03):422.[doi:10.11992/tis.201710012]
 LIN Yanqing,FU Yanggeng.NSGA-II-based EBRB rules activation multi-objective optimization[J].CAAI Transactions on Intelligent Systems,2018,13(01):422.[doi:10.11992/tis.201710012]
[7]柳强,焦国帅.基于Kriging模型和NSGA-Ⅱ的航空发动机管路卡箍布局优化[J].智能系统学报,2019,14(02):281.[doi:10.11992/tis.201709044]
 LIU Qiang,JIAO Guoshuai.Layout optimization of aero-engine pipe clamps based on Kriging model and NSGA-Ⅱ[J].CAAI Transactions on Intelligent Systems,2019,14(01):281.[doi:10.11992/tis.201709044]
[8]钱小宇,葛洪伟,蔡明.基于目标空间分解和连续变异的多目标粒子群算法[J].智能系统学报,2019,14(03):464.[doi:10.11992/tis.201711015]
 QIAN Xiaoyu,GE Hongwei,CAI Ming.Decomposition and continuous mutation-based multi-objective particle swarm optimization[J].CAAI Transactions on Intelligent Systems,2019,14(01):464.[doi:10.11992/tis.201711015]
[9]裴小兵,于秀燕.改进猫群算法求解置换流水车间调度问题[J].智能系统学报,2019,14(04):769.[doi:10.11992/tis.201804016]
 PEI Xiaobing,YU Xiuyan.Improved cat swarm optimization for permutation flow shop scheduling problem[J].CAAI Transactions on Intelligent Systems,2019,14(01):769.[doi:10.11992/tis.201804016]
[10]林锦,胡家琛,刘莞玲,等.利用MISA多目标优化的置信规则库分类算法[J].智能系统学报,2019,14(05):982.[doi:10.11992/tis.201809022]
 LIN Jin,HU Jiachen,LIU Wanling,et al.Belief rule base classification algorithm using MISA multi-objective optimization[J].CAAI Transactions on Intelligent Systems,2019,14(01):982.[doi:10.11992/tis.201809022]

备注/Memo

备注/Memo:
收稿日期:2012-08-27.
网络出版日期:2013-01-25 .
基金项目:国家自然科学基金资助项目(61074076);中国博士后科学基金资助项目(20090450119);中国博士点新教师基金资助项目(20092304120017).
通信作者:徐鹏.
E-mail: newadress@126.com.
作者简介:
陶新民,男,1973年生,副教授,硕士生导师,博士,主要研究方向为自然计算、数据简约、故障诊断.发表学术论文20余篇,其中被EI检索8篇.
徐鹏,男,1987年生,硕士研究生,主要研究方向为自然计算、信号处理.
刘福荣,女,1970年生,副教授,博士,主要研究方向为故障诊断、群智能计算、人工智能.
更新日期/Last Update: 2013-04-12