[1]张毅,罗明伟,罗元.脑电信号的小波变换和样本熵特征提取方法[J].智能系统学报,2012,7(04):339-344.
 ZHANG Yi,LUO Mingwei,LUO Yuan.EEG feature extraction method based on wavelet transform and sample entropy[J].CAAI Transactions on Intelligent Systems,2012,7(04):339-344.
点击复制

脑电信号的小波变换和样本熵特征提取方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第7卷
期数:
2012年04期
页码:
339-344
栏目:
出版日期:
2012-08-25

文章信息/Info

Title:
EEG feature extraction method based on wavelet transform and sample entropy
文章编号:
1673-4785(2012)04-0339-06
作者:
张毅1罗明伟1罗元2
1.重庆邮电大学 自动化学院,重庆 400065;
2. 重庆邮电大学 光电工程学院,重庆 400065
Author(s):
ZHANG Yi1 LUO Mingwei1 LUO Yuan2
1. College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
 2. College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
关键词:
脑电信号样本熵小波变换支持向量机特征提取
Keywords:
electroencephalograph signal sample entropy wavelet transform support vector machinefeature extraction
分类号:
TP18; R318
文献标志码:
A
摘要:
针对现有的采用单一的特征提取算法对运动想象脑电信号识别率不高的问题,提出一种结合小波变换和样本熵的特征提取方法.通过小波变换,把脑电信号进行3层分解,抽取出对应于脑电β节律频带的小波系数的能量均值和能量均值差,并结合脑电信号的样本熵组成特征向量,使用支持向量机分类器对左右手运动想象脑电信号进行分类.结果表明,结合小波变换和样本熵的特征提取方法明显优于仅采用小波变换、样本熵以及其他传统的特征提取方法,得到的最高正确识别率为91.43%.
Abstract:
Considering the issue of low recognition rate for electroencephalograph (EEG) signal of motor imagery by using current single feature extraction method, a feature extraction method based on wavelet transform and sample entropy is presented in this paper. The EEG signals are decomposed to three levels by wavelet transform and the average energy and its difference of wavelet coefficient corresponding to the β rhythm of EEG signals are computed. The feature vector is composed of the average energy, its difference of wavelet coefficient and sample entropy of EEG signals. Finally, the leftright hands motor imagery EEG signals are classified by a support vector machine classifier. The experimental results show that the feature extraction method combining wavelet transform and sample entropy is much better than the ways of only using wavelet transform, sample entropy, or others, and its highest recognition rate is 91.43%.

参考文献/References:

[1]MUGLERR E, BENSCH M, HALDER S, et al. Control of an internet browser using the P300 eventrelated potential[J]. Int J Bioelectromagn, 2008, 10(1): 5663. 
[2]王斐, 张育中,宁廷会,等. 脑—机接口研究进展[J]. 智能系统学报, 2011, 6(3): 189199.
 WANG Fei, ZHANG Yuzhong, NING Tinghui, et al. Research progress in a braincomputer interface[J]. CAAI Transactions on Intelligent Systems, 2011, 6(3): 189199.
[3]TANAKA K, MATSUNAGA K, WANG H. Electroencephalogrambased control of an electric wheelchair[J]. IEEE Trans Robotics, 2005, 21(4): 762766.
[4]REBSAMEN B, GUAN G T, ZHANG H H, et al. A brain controlled wheelchair to navigate in familiar environments [J]. IEEE Trans Neural Syst Rehabil Eng, 2010, 18(6): 590598.
[5]POLAT K, GNES S. Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals[J]. Expert System with Applications, 2008, 34(3): 20392048.
[6]徐宝国, 宋爱国. 单次运动想象脑电的特征提取和分类[J]. 东南大学学报:自然科学版, 2007, 37(4): 629633.
XU Baoguo, SONG Aiguo. Feature extraction and classification of single trial motor imagery EEG[J]. Journal of Southeast University: Natural Science Edition, 2007, 37(4): 629633.
[7]张毅, 杨柳, 李敏, 等. 基于AR和SVM的运动想象脑电信号识别[J]. 华中科技大学学报:自然科学版, 2011, 39(suppl.2): 103106.
ZHANG Yi, YANG Liu, LI Min, et al. Recognition of motor imagery EEG based on AR and SVM[J]. Journal of Huazhong University of Science & Technology: Natural Science Edition, 2011, 39(suppl.2): 103106.
[8]PFURSTCHELLER G, NEUPER C. Motor imagery and direct braincomputer communication[J]. Proceedings of the IEEE, 2001, 89(7): 11231134.
[9]李明爱, 王蕊, 郝冬梅. 想象左右手运动的脑电特征提取及分类研究[J]. 中国生物医学工程学报, 2009, 28(2): 166170.
LI Ming’ai, WANG Rui, HAO Dongmei. Feature extraction and classification of EEG for imagery leftright hands movement[J]. Chinese Journal for Biomedical Engineering, 2009, 28(2): 166170.
[10]RAFIEE J, RAFIEE M A, PRAUSE N, et al. Wavelet basis functions in biomedical signal processing[J]. Expert Systems with Applications, 2011, 38(5): 61906201.
[11]徐宝国, 宋爱国, 费树岷. 在线脑机接口中脑电信号的特征提取与分类方法[J]. 电子学报, 2011, 39(5): 10251030.
 XU Baoguo, SONG Aiguo, FEI Shumin. Feature extraction and classification of EEG in online braincomputer interface[J]. Acta Electronica Sinica, 2011, 39(5): 10251030.
[12]周鹏, 葛家怡, 曹红宝, 等. 基于样本熵的运动想象分类研究[J]. 信息与控制, 2008, 37(2): 191196.
ZHOU Peng, GE Jiayi, CAO Hongbao, et al. Classification of motor imagery based on sample entropy[J]. Information and Control, 2008, 37(2): 191196.
[13]RICHMAN J S, MOORMAN J R. Physiological timeseries analysis using approximate entropy and sample entropy[J]. American Journal of Physiology—Heart and Circulatory Physiology, 2000, 278(6): H2039H2049.

相似文献/References:

[1]王斐,张育中,宁廷会,等.脑-机接口研究进展[J].智能系统学报,2011,6(03):189.
 WANG Fei,ZHANG Yuzhong,NING Tinghui,et al.Research progress in a braincomputer interface[J].CAAI Transactions on Intelligent Systems,2011,6(04):189.
[2]杨建平,刘明华,吕敬祥,等.低觉醒脑电识别与唤醒的可穿戴系统研究[J].智能系统学报,2019,14(04):787.[doi:10.11992/tis.201806047]
 YANG Jianping,LIU Minghua,LYU Jingxiang,et al.A wearable system to recognize and awaken low-arousal state[J].CAAI Transactions on Intelligent Systems,2019,14(04):787.[doi:10.11992/tis.201806047]

备注/Memo

备注/Memo:
收稿日期: 2012-04-28.
网络出版日期:2012-08-03.
基金项目:科技部国际合作项目(2010DFA12160);国家自然科学基金资助项目(51075420).
通信作者:罗明伟.
E-mail:350874723@qq.com.
作者简介:
张毅,男,1966年生,教授,博士生导师,博士,重庆市人工智能学会理事,重庆邮电大学智能系统及机器人研究所所长,重庆市“322”人才工程第2层次人才,英国Essex大学机器人研究中心访问学者.主要研究方向为机器人技术及应用、生物信号处理及应用、模式识别.主持完成省部级及其他科研项目10余项,获国家发明专利4项,发表学术论文60余篇,其中30余篇被SCI、EI、ISTP检索,出版专著1部、教材2部.
罗明伟,男,1987年生,硕士研究生.主要研究方向为脑电信号处理及应用,发表学术论文5篇.
罗元,女,1972年生,教授,博士.主要研究方向为数字信号处理及应用、机器视觉、数字图像处理及应用.主持或参与国家自然科学基金、科技部国际合作项目、教育部回国留学人员科研项目等10余项,获国家发明专利6项,发表学术论文50余篇.
更新日期/Last Update: 2012-09-26