[1]刘宏岚,郝卫东.概率逻辑系统是与集合代数同态的布尔代数[J].智能系统学报,2011,6(02):107-113.
 LIU Honglan,HAO Weidong.A probabilistic logic system as a Boolean algebra homomorphic with set algebra[J].CAAI Transactions on Intelligent Systems,2011,6(02):107-113.
点击复制

概率逻辑系统是与集合代数同态的布尔代数(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第6卷
期数:
2011年02期
页码:
107-113
栏目:
学术论文—智能系统
出版日期:
2011-04-25

文章信息/Info

Title:
A probabilistic logic system as a Boolean algebra homomorphic with set algebra
文章编号:
1673-4785(2011)02-0107-07
作者:
刘宏岚 郝卫东
北京科技大学 信息工程学院,北京 100083
Author(s):
LIU Honglan HAO Weidong
School of Information Engineering, University of Science and Technology Beijing, Beijing 100083, China
关键词:
概率逻辑集合代数布尔代数同态真值函数
Keywords:
probabilistic propositional logic set algebra Boolean algebra homomorphism truth value function
分类号:
TP181
文献标志码:
A
摘要:
联结词的本质是命题的运算,只有对所有命题都适用的真值函数才能用于定义联结词.概率逻辑中由于命题的内涵相关性,任何[0,1]上的函数都不能完全适用于任意命题的运算,概率逻辑的联结词不能定义成真值函数.各种算子可以作为一种计算方法使用和研究,但不能代表一个逻辑系统研究系统的性质.概率逻辑系统是概率空间的逻辑表示,是与概率空间中的事件域(集合代数)同态的布尔代数.用事件域上的集合函数精确定义各种联结词,与经典二值逻辑相容,与事实相符,能够在经典逻辑框架内实现概率命题演算.
Abstract:
Connectives are essentially operations on propositions, and only the true value functions applicable to all propositions can be used to define connectives. In probabilistic logic, any function on [0,1] is not completely applicable for the operation on all propositions, and the connectives of probabilistic propositional logic cannot be defined as a true value function because of propositional relativity in connotation. Every operator may be discussed and employed as a method of calculation, but not as a logic system. A probabilistic propositional logic system is the logical description of a probabilistic space, and is a Boolean algebra homomorphic with set algebra that is the event domain in the probabilistic space. All connectives which are compatible with those in classical twovalued logic and which accord with fact can be defined exactly by set functions on event domains. The classical formal system of propositional calculus is completely applicable to probabilistic propositional calculus.

参考文献/References:

[1]王万森, 何华灿. 基于泛逻辑学的逻辑关系柔性化研究[J]. 软件学报, 2005, 16(5): 754. WANG Wansen, HE Huacan. Research on flexibility of logic relation based on universal logics[J]. Journal of Software, 2005, 16(5): 754.
[2]杨炳儒. 知识工程与知识发现[M]. 北京: 冶金工业出版社, 2000: 76.
[3]GABBAY D M, GUENTHNER F. Handbook of philosophical logic[M]. 2nd ed. London: Kluwer Academic publishers, 2001: 53.
[4]王国俊. 非经典数理逻辑与近似推理[M]. 北京: 科学出版社, 2000: 7.
[5]茆诗松, 程依明, 濮晓龙. 概率论与数理统计教程[M]. 北京: 高等教育出版社, 2004: 4.
[6]屈婉玲, 耿素云, 张立昂. 离散数学[M]. 北京: 高等教育出版社, 2008: 3. 
[7]刘宏岚, 高庆狮, 杨炳儒. 概率逻辑中的命题相关性与逻辑运算[J]. 北京科技大学学报, 2008, 30(9): 1079.
 LIU Honglan, GAO Qingshi, YANG Bingru. Proposition relativity and logic calculation in probabilistic logic[J]. Journal of University of Science and Technology Beijing, 2008, 30(9): 1079.
[8]杜国平. 经典逻辑与非经典逻辑基础[M]. 北京: 高等教育出版社, 2006: 9.
[9]刘宏岚, 高庆狮, 杨炳儒. 概率命题逻辑中命题相等关系的两个层面与命题演算[J]. 哲学研究, 2009,10: 113.
 LIU Honglan, GAO Qingshi, YANG Bingru. The two layers of propositional equivalence and the propositional calculus in probabilistic propositional logic[J]. Philosophical Researches, 2009, 10: 113.
[10]GAO Qingshi, GAO Xiaoyu, HU Yue. A new fuzzy set theory satisfying all classical set formulas[J]. Journal of Computer Science and Technology: English Edition, 2009, 24(4): 798.

相似文献/References:

[1]郑淑贤,解滨,米据生.决策形式背景下的主观贝叶斯概率推理[J].智能系统学报,2014,9(02):235.[doi:10.3969/j.issn.1673-4785.201307013]
 ZHENG Shuxian,XIE Bin,MI Jusheng.Subjective Bayesian probabilistic reasoning based on decision formal context[J].CAAI Transactions on Intelligent Systems,2014,9(02):235.[doi:10.3969/j.issn.1673-4785.201307013]

备注/Memo

备注/Memo:
收稿日期:2010-07-27.
基金项目:国家自然科学基金资助项目(60873002, 60573014).
通信作者:刘宏岚.
E-mail:honglanliu@ies.ustb.edu.cn.
作者简介:
刘宏岚,1973生,女,博士,主要研究方向为自然语言理解、机器翻译、模糊集合理论的研究与应用、离散数学等.发表学术论文多篇.
郝卫东,1970生,男,博士,主要研究方向为计算机网络、模糊集合理论的研究与应用.发表学术论文多篇.
更新日期/Last Update: 2011-05-19