[1]崔朝辉,刘冀伟,王志良,等.分形图像编码算法的参数选择对算法性能的影响[J].智能系统学报,2010,5(03):233-239.
 CUI Zhao-hui,LIU Ji-wei,WANG Zhi-liang,et al.The impact of parameter selection on fractal image coding algorithm performance[J].CAAI Transactions on Intelligent Systems,2010,5(03):233-239.
点击复制

分形图像编码算法的参数选择对算法性能的影响(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第5卷
期数:
2010年03期
页码:
233-239
栏目:
学术论文—智能系统
出版日期:
2010-06-25

文章信息/Info

Title:
The impact of parameter selection on fractal image coding algorithm performance
文章编号:
1673-4785(2010)03-0233-07
作者:
崔朝辉刘冀伟王志良曲 波
北京科技大学 信息工程学院,北京 100083
Author(s):
CUI Zhao-hui LIU Ji-wei WANG Zhi-liang QU Bo
School of Information Engineering, University of Science and Technology Beijing, Beijing 100083, China
关键词:
分形图像编码图像活跃度量PSNR估计参数选择
Keywords:
fractal image coding image activity measure(IAM) PSNR estimation parameter selection
分类号:
TP311
文献标志码:
A
摘要:
实际应用中的分形图像编码算法有众多参数需要确定,参数选择的恰当与否直接影响算法的性能,而如何确定参数的最佳值是每个研究者和使用者需要首先面对的问题.通过对基本的分形图像编解码算法的分析,发现解码图像的质量(PSNR)不仅跟值域块的分块大小相关,还跟图像的活跃度(IAM)相关.实验进一步表明,对应每一种分块大小,PSNR与IAM均存在对数关系;而且在解码过程中,仅需要6次迭代,解码图像就进入稳定状态.
Abstract:
A number of parameters need to be determined before a fractal image coding algorithm can be used. The performance of the algorithm is directly affected by the selection of parameters. Determining the optimal values is the first problem that each researcher and user faces. Analysis of basic fractal image encoding and decoding algorithms showed the quality of a decoded image, as measured by the peak signaltonoise ratio (PSNR), is not only related to the size of range blocks, but also the Image activity measure (IAM). Experiments showed that, for each range block, the relationship between PSNR and IAM is logarithmic. Moreover, the experiments indicated that only 6 iterations were required in the decoding process before an image went to a steady state.

参考文献/References:

[1]BARNSLEY M F. Fractal everywhere[M]. Boston: Academic Press, 1988: 375377.
[2]BARNSLEY M F, HURD L P. Fractal image compression[M]. Boston: AK Peters Ltd., 1993: 183.
[3]JACQUIN A G. Fractal image coding: a review[J]. Proceedings of the IEEE, 1993, 81(10): 12111225.
[4]JACQUIN A G. Image coding based on a fractal theory of iterated contractive image transformations[J]. IEEE Transactions on Image Process, 1992, 1(1): 1830.
[5]赵耀, 王红星, 袁宝宗. 分形图像编码研究的进展[J]. 电子学报, 2000, 28(4): 95101.
ZHAO Yao, WANG Hongxing, YUAN Baozong. Advances in fractal image coding[J]. Acta Electronica Sinica, 2000, 28(4): 95101.
[6]温江涛, 朱雪龙. 基于IFS分形理论的信源编码技术的研究[J]. 电子学报, 1996, 24(10): 17.
WEN Jiangtao, ZHU Xuelong. A study of IFS fractal based source coding techniques[J]. Acta Electronica Sinica, 1996, 24(10): 17
[7]袁静, 冯前进, 陈武凡, 等. 基于小波分解的快速分形图象压缩算法[J]. 中国图象图形学报, 2003, 8(4): 392397.
YUAN Jing, FENG Qianjin, CHEN Wufan, et al. A new fast fractal coding approach based on wavelet decomposition[J]. Journal of Image and Graphics, 2003, 8(4): 392397.
[8]何传江, 黄娟娟, 李高平. 基于分数盒维数的快速分形图像编码[J]. 中国图象图形学报, 2007, 12(2): 277282.
 HE Chuanjiang, HUANG Juanjuan, LI Gaoping. Fast fractal image coding based on fractional boxcounting dimension[J]. Journal of Image and Graphics, 2007, 12(2): 277282.
[9]MANDELBROT B B. The factal gometry of nature[M]. San Francisco: Freeman, 1982: 1516.
[10]FISHER Y. Fractal image compression: theory and application[M]. New York: SpringerVerlag, 1995: 2829.
[11]曹媛媛, 杨波, 徐光祐. 基于分形纹理特征和小波变换的网状纹理检测方法[J]. 自动化学报, 2007, 33(7): 688692.
CAO Yuanyuan, YANG Bo, XU Guangyou. Netlike texture detection method using fractal texture features and wavelet transform[J]. Acta Automatic Sinica, 2007, 33(7): 688692.
[12]FENG J. Fractional fractal geometry for image processing[D]. Evanston, Illinois: Northwestern University, 2000.
[13]于子凡, 杜贵君, 林宗坚. 图像盒子维数特征计算方法改进[J]. 测绘科学, 2006, 31(1): 8789.
YU Zifan, DU Guijun, LIN Zongjian. An improved algorithm of box counting for digital image[J]. Science of Surveying and Mapping, 2006, 31(1): 8789.
[14]SAHA S, VEMURI R. How do image statistics impact lossy coding performance?〖KG-*1/3〗[C]//Proceedings of International Conference on Information Technology: Coding and Computing. Las Vegas, USA, 2000: 4247.
[15]CUI Zhaohui, FU Jingliang, LIU Jiwei, et al. What statistics is PSNR related using JPEG2000[C]//2008 IEEE Conference on Cybernetics and Intelligent Systems. Chengdu, China, 2008: 984989.
[16]USC. The USCSIPI image database[EB/OL]. [20090801]. http://sipi.usc.edu/database/.
[17]UTK. The standard test images[EB/OL]. [20090801]. http://www.ece.utk.edu/~gonzalez/ipweb2e/downloads/standard_test_images/standard_test_images.zip.

备注/Memo

备注/Memo:
收稿日期:2009-09-03.
基金项目:国家“863”计划资助项目(2007AA01Z160);北京市重点学科建设资助项目(XK100080537)
通信作者:崔朝辉.E-mail:zhh.cui@gmail.com.
作者简介:
崔朝辉,男,1983年生,博士研究生,主要研究方向为图像压缩、图像分析.
刘冀伟,男,1962年生,副教授、博士,北京科技大学信息工程学院自动化系副主任,IEEE会员,中国人工智能学会人工心理与情感计算专业委员会理事.主要研究方向为图像处理、视频压缩、步态识别、运动跟踪、自动控制等.作为负责人与主要参与人员完成国家自然科学基金、国家“863”计划以及军工“863”计划多项,发表学术论文50余篇,其中被SCI、EI检索30余篇.
王志良,男,1956 年生,国家二级教授、博士生导师、博士,享受国务院特殊津贴专家,北京科技大学电子信息系主任,中国人工智能学会人工心理与人工情感专业委员会主任,第一届国际情感计算和智能交互学术大会主席.主要研究方向为人工心理与情感计算、服务机器人与数字人技术、网络化的信息服务系统等.近年来主持完成国家“863”计划、国家自然科学基金、国家科技攻关和国家“973”计划子项目等多项科研项目.发表学术论文180余篇,其中被SCI、EI检索60余篇,出版专著5部.
更新日期/Last Update: 2010-07-14