[1]张 贺,蔡江辉,张继福,等.信息熵度量的离群数据挖掘算法[J].智能系统学报,2010,5(2):150-155.
 ZHANG He,CAI Jiang-hui,ZHANG Ji-fu,et al.An outlier mining algorithm based on information entropy[J].CAAI Transactions on Intelligent Systems,2010,5(2):150-155.
点击复制

信息熵度量的离群数据挖掘算法

参考文献/References:
[1]HAN Jiawei, KAMBER M. Data mining:concepts and techniques[M].Bejing:China Machine Press, 2006:254255
[2]HAWKINS D. Identification of outliers [M].London:Chapman and Hall, 1980:228.
[3]BARNETT V, LEWIS T. Outliers in statistical data[M].New York: John Wiley & Sons,1994:7,49.
[4]RUTS I, ROUSSEEUW P. Computing depth contours of bivariate point clouds[J]. Computational Statistics and Data Analysis,1996,23(1):153168.
[5]ARNING A, AGRAWAL R, RAGHAVAN P.A linear method for deviation in large database[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portlan,Oregon,USA,1996:164169.
 [6]KNORR E M, NG R T. Algorithms of mining distancebased outliers in large datasets[C]//Proc of Int Conf on Very Large Database (VLDB’98).New York,USA, 1998:392402
.[7]BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying densitybased local outliers[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data. Dallas: ACM Press, 2000:93104.
[8]熊家军,李庆华.信息熵理论与入侵检测聚类问题研究[J].小型微型计算机系统,2005, 26(7):11631166.
XIONG Jiajun, LI Qinghua. Study on clustering problem for intrusion detection with information entropy[J]. Minimicro Systems,2005,26(7):11631166.
[9]薛 萍,金鸿章,王 双.应用最大熵原理分析通信系统脆性风险[J]. 电机与控制学报,2007,11(2): 7478.
XUE Ping, JIN Hongzhang,WANG Shuang. Application of the maximum entropy principle to brittleness risk analysis on communication system[J]. Electric Machines and Control, 2007, 11(2): 7478.
[10]HE Zengyou, XU Xiaofei, DENG Shengchun. A fast greedy algorithm for outlier mining[C]//Proceedings of PAKDD’2006 (LNAI3918). Berlin: SpringerVerlag, 2006:567576.
[11]倪巍伟,陈 耿,陆介平,等.基于局部信息熵的加权子空间离群点检测算法[J].计算机研究与发展,2008,45(7):11891192. NI Weiwei, CHEN Geng, LU Jieping. Local entropy based weighted subspace outlier mining algorithm [J]. Journal of Computer Research and Development, 2008, 45(7):11891192.
[12]于绍越,商 琳. ENBROD:基于信息熵的相对离群点的检测方法[J].南京大学学报:自然科学版,2008,44 (2):11891194. YU Shaoyue, SHANG Lin. An entropybased algorithm to detect relative outliers: ENBROD[J].Journal of Nanjing University:Natural Sciences, 2008,44 (2):11891194. 
[13]DUDA R O, HART P E, STOCK D G. Pattern classification[M].2nd ed. Beijing: China Machine Press, 2003:317356.
[14]NEWMAN D J, HETTICH S, BLAKE C L, et al. UCI repository of machine learning databases[DB/OL]. Irvine, CA: University of California, Department of Information and Computer Science,1998.[20080925]http://www.ics.uci.edu/~mlearn/MLRepository.html.
 [15]张继福,蒋义勇,胡立华,等.基于概念格的天体光谱离群数据识别方法[J].自动化学报,2007,34(9):10601066. ZHANG Jifu, JIANG Yiyong, HU Lihua, et al. A concept lattice based recognition method of celestial spectra outliers[J]. Acta Automatica Sinica, 2007,34(9):10601066.
相似文献/References:
[1]王科俊,刘靖宇,马慧,等.手指静脉图像质量评价[J].智能系统学报,2011,6(4):324.
 WANG Kejun,LIU Jingyu,MA Hui,et al.A finger vein image quality assessment method[J].CAAI Transactions on Intelligent Systems,2011,6(2):324.
[2]龚冬颖,黄敏,张洪博,等.RGBD人体行为识别中的自适应特征选择方法[J].智能系统学报,2017,12(1):1.[doi:10.11992/tis.201611008]
 GONG Dongying,HUANG Min,ZHANG Hongbo,et al.Adaptive feature selection method for action recognition of human body in RGBD data[J].CAAI Transactions on Intelligent Systems,2017,12(2):1.[doi:10.11992/tis.201611008]
[3]翟俊海,刘博,张素芳.基于粗糙集相对分类信息熵和粒子群优化的特征选择方法[J].智能系统学报,2017,12(3):397.[doi:10.11992/tis.201705004]
 ZHAI Junhai,LIU Bo,ZHANG Sufang.A feature selection approach based on rough set relative classification information entropy and particle swarm optimization[J].CAAI Transactions on Intelligent Systems,2017,12(2):397.[doi:10.11992/tis.201705004]
[4]黄琴,钱文彬,王映龙,等.代价敏感数据的多标记特征选择算法[J].智能系统学报,2019,14(5):929.[doi:10.11992/tis.201807027]
 HUANG Qin,QIAN Wenbin,WANG Yinglong,et al.Multi-label feature selection algorithm for cost-sensitive data[J].CAAI Transactions on Intelligent Systems,2019,14(2):929.[doi:10.11992/tis.201807027]
[5]张晓鹤,陈德刚,米据生.基于信息熵的对象加权概念格[J].智能系统学报,2020,15(6):1097.[doi:10.11992/tis.202006043]
 ZHANG Xiaohe,CHEN Degang,MI Jusheng.Object-weighted concept lattice based on information entropy[J].CAAI Transactions on Intelligent Systems,2020,15(2):1097.[doi:10.11992/tis.202006043]
[6]唐荣,罗川,曹潜,等.不完备数据中面向特征值更新的增量特征选择方法[J].智能系统学报,2021,16(3):493.[doi:10.11992/tis.202006045]
 TANG Rong,LUO Chuan,CAO Qian,et al.Incremental approach for feature selection in incomplete data while updating feature values[J].CAAI Transactions on Intelligent Systems,2021,16(2):493.[doi:10.11992/tis.202006045]
[7]李庆勇,何军,张春晓.基于分类差异与信息熵对抗的无监督域适应算法[J].智能系统学报,2021,16(6):999.[doi:10.11992/tis.202010020]
 LI Qingyong,HE Jun,ZHANG Chunxiao.Unsupervised domain adaptation algorithm based on classification discrepancy and information entropy[J].CAAI Transactions on Intelligent Systems,2021,16(2):999.[doi:10.11992/tis.202010020]

备注/Memo

收稿日期:2008-12-30.
基金项目:山西省青年科学基金资助项目(2008021028).
通信作者:张 贺.E-mail:zhanghe_helen@126.com.
作者简介:
张贺,女,1981年生,硕士研究生. 主要研究方向为数据挖掘.
 蔡江辉,男,1978年生.讲师,主要研究方向为离群数据挖掘.
张继福,男,1963年生,教授,博士. 主要研究方向为数据挖掘、模式识别与智能信息系统. 已主持完成国家自然科学基金、国家“863”计划子课题等省部级以上科研项目10余项,发表学术论文100余篇,其中被SCI、EI30余篇.

更新日期/Last Update: 2010-05-24
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134