[1]任孝平,蔡自兴.基于阿克曼原理的车式移动机器人运动学建模[J].智能系统学报,2009,4(06):534-537.[doi:10.3969/j.issn.1673-4785.2009.06.011]
 REN Xiao-ping,CAI Zi-xing.Using the Ackerman principle for kinematic modeling of wheeled mobile robots[J].CAAI Transactions on Intelligent Systems,2009,4(06):534-537.[doi:10.3969/j.issn.1673-4785.2009.06.011]
点击复制

基于阿克曼原理的车式移动机器人运动学建模(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第4卷
期数:
2009年06期
页码:
534-537
栏目:
出版日期:
2009-12-25

文章信息/Info

Title:
Using the Ackerman principle for kinematic modeling of wheeled mobile robots
文章编号:
1673-4785(2009)06-0534-04
作者:
任孝平蔡自兴
中南大学 信息科学与工程学院,湖南 长沙 410083
Author(s):
REN Xiao-ping CAI Zi-xing
School of Information Science & Engineering, Central South University, Changsha 410083, China
关键词:
轮式移动机器人运动学模型阿克曼原理转向特性
Keywords:
wheeled mobile robot kinematics model Ackerman principle turning characteristics
分类号:
TP242.6
DOI:
10.3969/j.issn.1673-4785.2009.06.011
文献标志码:
A
摘要:
基于阿克曼原理的轮式移动机器人运动学模型对于无人驾驶车辆的研究有着重要的意义.对轮式移动机器人的运动学特性进行了分析,建立了不考虑滑行、刹车等的轮式移动机器人的运动学模型.对该运动学模型引入了阿克曼约束,给出了描述机器人运动状态的转向角、航向角和转弯半径等物理量的数学公式.最后对该运动学模型进行仿真实验,验证了所建立的运动学模型的正确性,为进一步研究轮式移动机器人提供了理论分析的基础.
Abstract:
Applying the Ackerman principle to kinematic modeling of wheeled mobile robots is of vital importance for improving the performance of unmanned autonomous vehicles. The kinematic characteristics of wheeled mobile robots were analyzed in this paper, and a kinematic model was set up that did not consider sliding or braking. The Ackerman principle was then introduced to this kinematic model. Mathematical formulas were proposed for turning angle, steering angle and turning radius. These accurately reflect the movement status of the mobile robot, providing a theoretical basis for analysis of future intelligent vehicles. The conclusions were validated through a simulation.

参考文献/References:

[1]REN Xiaodong, FENG Zuren, CHANG Hong, MU Ruofeng. Kinematics modeling and analysis for three-wheel omnidirectional mobile robot[C]//Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China, 2008:2608-2613.
[2]SIEGWART R, NOUBAKHSH I R. Introduction to autonomous mobile robots[M]. MA,USA: MIT Press, 2004:202-205.
[3]CHEN Lei, MA Jie, GAO Haibo.Kinematics modeling of eight-wheel lunar rover[C]//Proceedings of the 27th Chinese Control Conference.Kunming, China, 2008:346-350.
[4]宋小康,谈大龙,吴镇炜,王越超.全地形轮式移动机器人运动学建模与分析[J].机械工程学报,2008,44(6):148-154.
SONG Xiaokang, TAN Dalong, WU Zhenwei,WANG Yuechao. Kinematics modeling and analyses of all-terrain wheeled mobile robots[J]. Chinese Journal of Mechanical Engineering, 2008, 44(6):148-154.
[5]TLALE N, DeVILLIERS M. Kinematics and dynamics modelling of a mecanum wheeled mobile platform[C]//15th International Conference on Mechatronics and Machine Vision in Practice (M2VIP08).Auckland,NewZealand, 2008:657-662.
[6]MUIR P F, NEUMAN C P. Kinematic modeling of wheeled mobile robots CMU-RI-TR-86-12[R]. Robotics Institute, Carnegie Mellon University, 1986.
[7]周文琴,贾英民. 4轮操纵车辆改进的自适应控制[C]//2002中国控制与决策学术年会论文集. 沈阳,2002:168-171.
ZHOU Wenqin, JIA Yingmin. Improvement adaptive control of 4WS car[C]//2002 Proceedings of Chinese Control and Decision Conference. Shenyang, 2002:168-171.
[8]邓召文,张福兴.基于转向半径的汽车稳态转向特性分析[J].农业装备与车辆工程, 2007(1):23-26.
DENG Zhaowen, ZHANG Fuxing.The analysis of steady-state steering characteristic turning radius-based in vehicle[J]. Agricultural Equipment & Vehicle Engineering, 2007(1):23-26.
[9]MORETTE N, NOVALES C, VIEYRES P. Inverse versus direct kinematics model based on flatness and escape lanes to control CyCab mobile robot[C]//2008 IEEE International Conference on Robotics and Automation. Pasadena, CA, USA, 2008:2240-2245.
[10]RATNER D, MCKERROW P. Dynamics of the Titan four-wheel drive mobile robot with floating Ackerman steering[C]// Brisbane,1999:144-149.
[11]孟    刚.车辆的转向特性与阿卡曼转向原理的分析[J].机械研究与应用,2007,20(4):36-38.
MENG Gang. Analysis of turning characteristic and the principle of Ackerman turning for vehicle[J]. Mechanical Research & Application,2007,20(4):36-38.

相似文献/References:

[1]马正华,张倩倩,陈岚萍.四旋翼飞行器自适应反演姿态控制[J].智能系统学报,2015,10(03):454.[doi:10.3969/j.issn.1673-4785.201405008]
 MA Zhenghua,ZHANG Qianqian,CHEN Lanping.Attitude control of quadrotor aircraft via adaptive back-stepping control[J].CAAI Transactions on Intelligent Systems,2015,10(06):454.[doi:10.3969/j.issn.1673-4785.201405008]
[2]吴垠,刘忠信,陈增强,等.一种基于模糊方法的领导-跟随型多机器人编队控制[J].智能系统学报,2015,10(04):533.[doi:10.3969/j.issn.1673-4785.201407014]
 WU Yin,LIU Zhongxin,CHEN Zengqiang,et al.Formation control of leader-following type multi-robotbased on fuzzy control method[J].CAAI Transactions on Intelligent Systems,2015,10(06):533.[doi:10.3969/j.issn.1673-4785.201407014]
[3]王平,许炳招,娄保东,等.仿生机器鱼运动学模型优化与实验[J].智能系统学报,2017,12(02):196.[doi:10.11992/tis.201604034]
 WANG Ping,XU Bingzhao,LOU Baodong,et al.Ptimization and experimentation on the kinematic model of bionic robotic fish[J].CAAI Transactions on Intelligent Systems,2017,12(06):196.[doi:10.11992/tis.201604034]

备注/Memo

备注/Memo:
收稿日期:2009-10-02.
基金项目:国家自然科学基金资助项目(90820302,60805027);国家博士点基金资助项目(200805330005);湖南省院士基金资助项目(2009FJ4030).
作者简介:
任孝平,男,1984年生,博士研究生,主要研究方向为多机器人系统、通信网络等,发表学术论文10余篇.
蔡自兴,男,1938年生,教授、博士生导师, 国际导航与运动控制科学院院士、中国人工智能学会副理事长、中国自动化学会理事.主要研究方向为人工智能、机器人、智能控制,发表学术论文500余篇.
更新日期/Last Update: 2010-02-22