[1]王蓁蓁,邢汉承.拟人类思维的形式结构模型[J].智能系统学报,2008,3(06):529-535.
 WANG Zhen-zhen,XING Han-cheng.A model simulating the formal structure of the human mind[J].CAAI Transactions on Intelligent Systems,2008,3(06):529-535.
点击复制

拟人类思维的形式结构模型(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第3卷
期数:
2008年06期
页码:
529-535
栏目:
出版日期:
2008-12-25

文章信息/Info

Title:
A model simulating the formal structure of the human mind
文章编号:
1673-4785(2008)06-0529-07
作者:
王蓁蓁邢汉承
东南大学计算机科学与工程学院,江苏 南京210096
Author(s):
WANG Zhen-zhenXING Han-cheng
School of Computer Science and Engineering, Southeast University, Nanjing 210096,China
关键词:
人类思维知识空间直觉空间潜意识空间
Keywords:
human mind knowledge space intuitive space subconscious space
分类号:
TP18
文献标志码:
A
摘要:
人工智能的迅速发展促使人们关注人脑思维功能并积极开发概括性的心智模型.如果能恰当地表示人类思维特征和推理方面的信息,则对智能概念的理解十分有益.因此在现有的思维科学研究基础上,将人类思维形式化,为它构造一个数学模型,主要包括对知识空间,直觉空间,潜意识空间这三个空间进行形式建模.以此说明人类思维的重要特征是:在知识空间里人类思维是逻辑的;在潜意识空间里,虽然人类思维出现随机、混沌现象,但在整体上仍是属于人类的理性活动,所以总能在与之联系的直觉空间里,找到“确定性”的概率方式进行,也就是说直觉空间是提供算法的.最后简单叙述它的理论可行性,由此阐述人类思维的创造性功能.
Abstract:
The rapid development of Artificial Intelligence has inspired researchers to pay close attention to the functional structures of the human mind and to actively develop general mental models. It would improve our understanding of intelligence if we could properly model the characteristics of human thought and something about how it makes inferences. On the basis of existing studies of the mind, we constructed a formal mathematical model of the human mind. This model includes formal descriptions of the knowledge space, the intuitive space and the subconscious space. It reflects key facets of the human mind: the ways of thinking in the knowledge space are logical so that on the whole behavior is rational; the subconscious space is stochastic or chaotic in nature; in the associated intuitive space, it proceeds in a probabilistic way, suggesting the intuitive space provides algorithms. Finally we discussed the theoretical feasibility of this model to illustrate the creative ability of the human mind.

参考文献/References:

[1]MEYSTEL A, ALBUS J.智能系统——结构、设计与控制[M]. 冯祖仁,李人厚,等译. 北京:电子工业出版社,2005. 
[2]王小平,曹立明. 遗传算法——理论、应用与软件实现[M]. 西安:西安交通大学出版社,2002.
[3]孙承意,周秀玲,王皖贞. 思维进化计算的描述与研究成果综述[J]. 通讯和计算机, 2004, 1(1): 13-21.
 SUN Chengyi, ZHOU Xiuling, WANG Wanzhen. Mind evolutionary computation and applications[J]. Journal of Communication and Computer, 2004, 1(1): 13-21.
[4]孙承意, 王皖贞, 贾鸿雁. 思维进化计算的产生与进展[C]//中国智能自动化会议(CIAC).昆明,2001.
SUN Chengyi, WANG Wanzhen, JIA Hongyan. Generation and progress of mind evolutionary computation[C]// Chinese Intelligent Automation Conference (CIAC).Kunming, 2001.
[5]查   凯,介   婧,曾建潮. 基于思维进化算法的常微分方程组演化建模[J]. 系统仿真学报, 2002, 14(5):539-543.
ZHA Kai, JIE Jing, ZENG Jianchao. Evolutionary modeling algorithm for systems of ordinary differential equations based on mind evolutionary computation[J]. Journal of System Simulation, 2002, 14(5):539-543.
[6]钱学森. 开展思维科学的研究[M]//关于思维科学. 上海:上海人民出版社,1986.
[7]王健吾. 数学思维方法引论[M].合肥:安徽教育出版社,1996.
[8]王健吾. 直觉思维初级概率模型[J]. 工科数学,1996, 12(1):73-76.
WANG Jianwu. Junior probabilistic model of intuitive thinking[J]. Journal of Mathematics for Technology 1996, 12(1):73-76.
[9]王梓坤. 随机过程论[M]. 北京:科学出版社,1976:439.
[10]HUTTER M. Universal artificial intelligence: Sequential decisions based on algorithmic probability[M]. Berlin:Springer-Verlag,2005.
[11]黄志远. 随机分析学基础[M]. 武汉:武汉大学出版社,1988:2.
[12]王蓁蓁,邢汉承,张志政,等. 一种模拟人类发散思维的测度值马尔可夫理论模型[J]. 南京大学学报:自然科学版,2008,44(2):148=156.
 WANG Zhenzhen, XING Hancheng, ZHANG Zhizheng,et al. A theoretical model of measurevalued Markov processes simulating the divergent thinking of man[J]. Journal of Nanjing University:Natural Science,2008, 44(2): 148-156.
[13]WANG Zhenzhen, XING Hancheng. Dynamicprobabilistic particle swarm synergetic model: A new framework for a more In-depth understanding of particle swarm algorithms[C]//2008 IEEE Congress on Evolutionary Computation (IEEE CEC 2008) within 2008 IEEE World Congress on Computational Intelligence (WCCI ).Hong Kong,China,2008:312-321.
[14]JAMES K. Dynamic probabilistic particle swarms[C]//Proceedings of the Conference on Genetic and Evolutionary Computation. New York, USA, 2005.

备注/Memo

备注/Memo:
收稿日期:2008-01-04.
基金项目:国家自然科学基金资助项目(90412014,60572071).
作者简介:
王蓁蓁,女,1975年生,博士研究生,主要研究方向为知识表示和推理、马尔可夫决策过程、群智能.发表学术论文数篇.
邢汉承,男, 1938年生,教授,博士生导师,计算机学会、电子学会高级会员,曾任东南大学计算机系主任,计算机学会理事,计算机学会人工智能与模式识别专业委员会常务理事,人工智能学会理事,南京软件协会理事长等.主要研究方向为计算机应用、人工智能.获全国科学大会奖1项,电子工业部科技进步二等奖1项,江苏省科技进步三等奖2项,发表学术论文多篇.
更新日期/Last Update: 2009-04-03