[1]严爱军,郝晨.基于混合分布加权M估计和自适应正则化的随机配置网络[J].智能系统学报,2025,20(6):1392-1403.[doi:10.11992/tis.202501023]
 YAN Aijun,HAO Chen.Stochastic configuration networks based on mixed distribution weighted M-estimation and adaptive regularization[J].CAAI Transactions on Intelligent Systems,2025,20(6):1392-1403.[doi:10.11992/tis.202501023]
点击复制

基于混合分布加权M估计和自适应正则化的随机配置网络

参考文献/References:
[1] MAO Chengsheng, YAO Liang, LUO Yuan. ImageGCN: multi-relational image graph convolutional networks for disease identification with chest X-rays[J]. IEEE transactions on medical imaging, 2022, 41(8): 1990-2003.
[2] QIAO Junfei, SUN Zijian, MENG Xi. A comprehensively improved interval type-2 fuzzy neural network for NOx emissions prediction in MSWI process[J]. IEEE transactions on industrial informatics, 2023, 19(11): 11286-11297.
[3] SCARDAPANE S, WANG Dianhui. Randomness in neural networks: an overview[J]. Wiley interdisciplinary reviews: data mining and knowledge discovery, 2017, 7(2): e1200.
[4] 乔俊飞, 李凡军, 杨翠丽. 随机权神经网络研究现状与展望[J]. 智能系统学报, 2016, 11(6): 758-767.
QIAO Junfei, LI Fanjun, YANG Cuili. Review and prospect on neural networks with random weights[J]. CAAI transactions on intelligent systems, 2016, 11(6): 758-767.
[5] PAO Y H, TAKEFUJI Y. Functional-link net computing: theory, system architecture, and functionalities[J]. Computer, 1992, 25(5): 76-79.
[6] LI Ming, WANG Dianhui. Insights into randomized algorithms for neural networks: practical issues and common pitfalls[J]. Information sciences, 2017, 382: 170-178.
[7] WANG Dianhui, LI Ming. Stochastic configuration networks: fundamentals and algorithms[J]. IEEE transactions on cybernetics, 2017, 47(10): 3466-3479.
[8] DAI Wei, ZHOU Xinyu, LI Depeng, et al. Hybrid parallel stochastic configuration networks for industrial data analytics[J]. IEEE transactions on industrial informatics, 2021, 18(4): 2331-2341.
[9] LI Kang, YANG Cuili, WANG Wei, et al. An improved stochastic configuration network for concentration prediction in wastewater treatment process[J]. Information sciences, 2023, 622: 148-160.
[10] EL-MELEGY M T. Model-wise and point-wise random sample consensus for robust regression and outlier detection[J]. Neural networks, 2014, 59: 23-35.
[11] DAI Wei, CHEN Qixin, CHU Fei, et al. Robust regularized random vector functional link network and its industrial application[J]. IEEE access, 2017, 5: 16162-16172.
[12] WANG Dianhui, LI Ming. Robust stochastic configuration networks with kernel density estimation for uncertain data regression[J]. Information sciences, 2017, 412: 210-222.
[13] 李温鹏, 周平. 高炉铁水质量鲁棒正则化随机权神经网络建模[J]. 自动化学报, 2020, 46(4): 721-733.
LI Wenpeng, ZHOU Ping. Robust regularized RVFLNs modeling of molten iron quality in blast furnace ironmaking[J]. Acta automatica sinica, 2020, 46(4): 721-733.
[14] LI Ming, HUANG Changqin, WANG Dianhui. Robust stochastic configuration networks with maximum correntropy criterion for uncertain data regression[J]. Information sciences, 2019, 473: 73-86.
[15] DAI Wei, LI Depeng, CHEN Qixin, et al. Data driven particle size estimation of hematite grinding process using stochastic configuration network with robust technique[J]. Journal of Central South University, 2019, 26(1): 43-62.
[16] ZHOU Ping, LYU Youbin, WANG Hong, et al. Data-driven robust RVFLNs modeling of a blast furnace iron-making process using cauchy distribution weighted M-estimation[J]. IEEE transactions on industrial electronics, 2017, 64(9): 7141-7151.
[17] ZOU Hui, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the royal statistical society: series B (statistical methodology), 2005, 67(2): 301-320.
[18] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of machine learning research, 2014, 15: 1929-1958.
[19] 王前进, 代伟, 陆群, 等. 一种随机配置网络软测量模型的稀疏学习方法[J]. 控制与决策, 2022, 37(12): 3171-3182.
WANG Qianjin, DAI Wei, LU Qun, et al. A sparse learning method for SCN soft measurement model[J]. Control and decision, 2022, 37(12): 3171-3182.
[20] ZHAO Lijie, ZOU Shida, HUANG Mingzhong, et al. Distributed regularized stochastic configuration networks via the elastic net[J]. Neural computing and applications, 2021, 33(8): 3281-3297.
[21] 赵立杰, 邹世达, 郭烁, 等. 基于正则化随机配置网络的球磨机工况识别[J]. 控制工程, 2020, 27(1): 1-7.
ZHAO Lijie, ZOU Shida, GUO Shuo, et al. Ball mill load condition recognition model based on regularized stochastic configuration networks[J]. Control engineering of China, 2020, 27(1): 1-7.
[22] FAN Jun, YAN Ailing, XIU Naihua. Asymptotic properties for M-estimators in linear models with dependent random errors[J]. Journal of statistical planning and inference, 2014, 148: 49-66.
[23] ROUSSEEUW P J, CROUX C. Alternatives to the Median absolute deviation[J]. Journal of the American statistical association, 1993, 88(424): 1273-1283.
[24] L?PEZ-RUBIO E, PALOMO E J, DOM?NGUEZ E. Robust self-organization with M-estimators[J]. Neurocomputing, 2015, 151: 408-423.
[25] AGLIARI E, ALEMANNO F, AQUARO M, et al. Regularization, early-stopping and dreaming: a hopfield-like setup to address generalization and overfitting[J]. Neural networks, 2024, 177: 106389.
[26] 张成龙, 丁世飞, 郭丽丽, 等. 随机配置网络研究进展[J]. 软件学报, 2024, 35(5): 2379-2399.
ZHANG Chenglong, DING Shifei, GUO Lili, et al. Research progress on stochastic configuration network[J]. Journal of software, 2024, 35(5): 2379-2399.
[27] WANG Tianzheng, TANG Jian, XIA Heng, et al. Data-driven multi-objective intelligent optimal control of municipal solid waste incineration process[J]. Engineering applications of artificial intelligence, 2024, 137: 109157.
[28] MENG Xi, TANG Jian, QIAO Junfei. NOx emissions prediction with a brain-inspired modular neural network in municipal solid waste incineration processes[J]. IEEE transactions on industrial informatics, 2022, 18(7): 4622-4631.
[29] 汤健, 夏恒, 余文, 等. 城市固废焚烧过程智能优化控制研究现状与展望[J]. 自动化学报, 2023, 49(10): 2019-2059.
TANG Jian, XIA Heng, YU Wen, et al. Research status and prospects of intelligent optimization control for municipal solid waste incineration process[J]. Acta automatica sinica, 2023, 49(10): 2019-2059.
[30] 孙剑, 蒙西, 乔俊飞. 数据驱动的城市固废焚烧过程烟气含氧量预测控制[J]. 控制理论与应用, 2024, 41(3): 484-495.
SUN Jian, MENG Xi, QIAO Junfei. Data-driven predictive control of oxygen content in flue gas for municipal solid waste incineration process[J]. Control theory & applications, 2024, 41(3): 484-495.
相似文献/References:
[1]丁永生.计算智能的新框架:生物网络结构[J].智能系统学报,2007,2(2):26.
 DING Yong-sheng.A new scheme for computational intelligence: bio-network architecture[J].CAAI Transactions on Intelligent Systems,2007,2():26.
[2]徐 雄.人工情感的进化控制系统实现[J].智能系统学报,2008,3(2):135.
 XU Xiong.Implementation of an evolutionary control system based on artificial emotion[J].CAAI Transactions on Intelligent Systems,2008,3():135.
[3]周孔丹,李 宁,鲁华祥.单电子电路的鲁棒性研究[J].智能系统学报,2008,3(3):195.
 ZHOU Kong-dan,LI Ning,LU Hua-xiang.Researching the robustness of single electron devices[J].CAAI Transactions on Intelligent Systems,2008,3():195.
[4]张米娜,韩红桂,乔俊飞.前馈神经网络结构动态增长-修剪方法[J].智能系统学报,2011,6(2):101.
 ZHANG Mina,HAN Honggui,QIAO Junfei.Research on dynamic feedforward neural network structure based on growing and pruning methods[J].CAAI Transactions on Intelligent Systems,2011,6():101.
[5]张文辉,高九州,马静,等.漂浮基空间机器人的径向基神经网络鲁棒自适应控制[J].智能系统学报,2011,6(2):114.
 ZHANG Wenhui,GAO Jiuzhou,MA Jing,et al.The RBF neural network robust adaptive control of a freefloating space robot[J].CAAI Transactions on Intelligent Systems,2011,6():114.
[6]薄迎春,乔俊飞,杨刚.一种多模块协同参与的神经网络[J].智能系统学报,2011,6(3):225.
 BO Yingchun,QIAO Junfei,YANG Gang.A multimodule cooperative neural network[J].CAAI Transactions on Intelligent Systems,2011,6():225.
[7]蒲兴成,张军,张毅.基于神经网络的改进行为协调控制及其在智能轮椅路径规划中的应用[J].智能系统学报,2011,6(5):456.
 PU Xingcheng,ZHANG Jun,ZHANG Yi.Modified behavior coordination for intelligent wheelchair path planning based on a neural network[J].CAAI Transactions on Intelligent Systems,2011,6():456.
[8]段海庆,朱齐丹.基于反步自适应神经网络的船舶航迹控制[J].智能系统学报,2012,7(3):259.
 DUAN Haiqing,ZHU Qidan.Trajectory tracking control of ships based onan adaptive backstepping neural network[J].CAAI Transactions on Intelligent Systems,2012,7():259.
[9]乔俊飞,逄泽芳,韩红桂.基于改进粒子群算法的污水处理过程神经网络优化控制[J].智能系统学报,2012,7(5):429.
 QIAO Junfei,PANG Zefang,HAN Honggui.Neural network optimal control for wastewater treatment processbased on APSO[J].CAAI Transactions on Intelligent Systems,2012,7():429.
[10]郭一,刘金琨.带执行器饱和的柔性关节机器人位置反馈动态面控制[J].智能系统学报,2013,8(1):21.[doi:10.3969/j.issn.1673-4785.201204012]
 GUO Yi,LIU Jinkun.Position feedback dynamic surface control for flexible joint robots with actuator saturation[J].CAAI Transactions on Intelligent Systems,2013,8():21.[doi:10.3969/j.issn.1673-4785.201204012]

备注/Memo

收稿日期:2025-1-15。
基金项目:国家自然科学基金项目(62373017,62073006);北京市自然科学基金项目(4212032).
作者简介:严爱军,博士生导师,教授,主要研究方向为复杂过程建模与智能优化控制方法。发表学术论文100余篇。E-mail:yanaijun@bjut.edu.cn。;郝晨,硕士研究生,主要研究方向为复杂过程建模与智能优化控制方法。E-mail:haochen@emails.bjut.edu.cn。
通讯作者:严爱军. E-mail:yanaijun@bjut.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com