[1]李珊珊,赵清杰,朱文龙,等.引入因果发现学习的跨领域知识泛化方法[J].智能系统学报,2025,20(4):1033-1045.[doi:10.11992/tis.202501005]
 LI Shanshan,ZHAO Qingjie,ZHU Wenlong,et al.Cross-domain knowledge generalization method introducing causal discovery learning[J].CAAI Transactions on Intelligent Systems,2025,20(4):1033-1045.[doi:10.11992/tis.202501005]
点击复制

引入因果发现学习的跨领域知识泛化方法

参考文献/References:
[1] 张凯, 杨朋澄, 彭开香, 等. 基于深度置信网络的多模态过程故障评估方法及应用[J]. 自动化学报, 2024, 50(1): 89-102.
ZHANG Kai, YANG Pengcheng, PENG Kaixiang, et al. A deep belief network-based fault evaluation method for multimode processes and its applications[J]. Acta automatica sinica, 2024, 50(1): 89-102.
[2] 张汝波, 蔺庆龙, 张天一. 基于深度学习的图像篡改检测方法综述[J]. 智能系统学报, 2025, 20(2): 283-304.
ZHANG Rubo, LIN Qinglong, ZHANG Tianyi. A review of image tampering detection methods based on deep learning[J]. CAAI transactions on intelligent systems, 2025, 20(2): 283-304.
[3] 丁贵广, 陈辉, 王澳, 等. 视觉深度学习模型压缩加速综述[J]. 智能系统学报, 2024, 19(5): 1072-1081.
DING Guiguang, CHEN Hui, WANG Ao, et al. Review of model compression and acceleration for visual deep learning[J]. CAAI transactions on intelligent systems, 2024, 19(5): 1072-1081.
[4] LI Shanshan, ZHAO Qingjie, ZHANG Changchun, et al. Deep discriminative causal domain generalization[J]. Information sciences, 2023, 645: 119335.
[5] 邵海东, 肖一鸣, 颜深, 等. 域泛化机械故障诊断研究进程与展望[J]. 中国科学: 技术科学, 2025, 55(1): 14-32.
SHAO Haidong, XIAO Yiming, YAN Shen, et al. Progress and prospects of domain generalization mechanical fault diagnosis research[J]. Scientia sinica (technologica), 2025, 55(1): 14-32.
[6] 崔腾, 张海军, 代伟. 基于分布共识的联邦增量迁移学习[J]. 计算机学报, 2024, 47(4): 821-841.
CUI Teng, ZHANG Haijun, DAI Wei. Federated incremental transfer learning based on distributed consensus[J]. Chinese journal of computers, 2024, 47(4): 821-841.
[7] 李鑫尧, 李晶晶, 朱磊, 等. 资源受限的大模型高效迁移学习算法研究综述[J]. 计算机学报, 2024, 47(11): 2491-2521.
LI Xinyao, LI Jingjing, ZHU Lei, et al. Efficient transfer learning of large models with limited resources: a survey[J]. Chinese journal of computers, 2024, 47(11): 2491-2521.
[8] MAHAJAN D, TOPLE S, SHARMA A. Domain generalization using causal matching[C]//Proceedings of International Conference on Machine Learning. [S.l.]: OpenReview.net, 2021: 7313-7324.
[9] MAO Haiyi, LIU Hongfu, DOU J, et al. Towards cross-modal causal structure and representation learning[C]//Machine Learning for Health. New Orleans: PMLR, 2022: 120-140.
[10] ZHAO Shengjia, SONG Jiaming, ERMON S. Learning hierarchical features from deep generative models[C]//Proceedings of the International Conference on Machine Learning. Sydney: OpenReview.net, 2017: 4091-4099.
[11] ZHENG Xun, DAN Chen, ARAGAM B, et al. Learning sparse nonparametric dags[C]//Proceedings of the International Conference on Artificial Intelligence and Statistics. [S.l.]: PMLR, 2020: 3414-3425.
[12] GULRAJANI I, LOPEZ-PAZ D. In search of lost domain generalization[C]//Proceedings of International Conference on Learning Representations. [S.l.]: PMLR, 2020: 1-29.
[13] CHA J, CHUN S, LEE K, et al. SWAD: domain generalization by seeking flat minima[EB/OL]. (2021-02-17) [2025-01-07]. https://arxiv.org/abs/2102.08604.
[14] GHIFARY M, KLEIJN W B, ZHANG Mengjie, et al. Domain generalization for object recognition with multi-task autoencoders[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 2551-2559.
[15] FANG Chen, XU Ye, ROCKMORE D N. Unbiased metric learning: on the utilization of multiple datasets and web images for softening bias[C]//2013 IEEE International Conference on Computer Vision. Sydney: IEEE, 2013: 1657-1664.
[16] LI Da, YANG Yongxin, SONG Yizhe, et al. Deeper, broader and artier domain generalization[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 5543-5551.
[17] BEERY S, VAN HORN G, PERONA P. Recognition in terra incognita[C]//Computer Vision–ECCV 2018. Cham: Springer International Publishing, 2018: 472-489.
[18] PENG Xingchao, BAI Qinxun, XIA Xide, et al. Moment matching for multi-source domain adaptation[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1406-1415.
[19] ARJOVSKY M, BOTTOU L, GULRAJANI I, et al. Invariant risk minimization[EB/OL]. (2019-07-05) [2025-01-07]. https://arxiv.org/abs/1907.02893.
[20] VAPNIK V N. An overview of statistical learning theory[J]. IEEE transactions on neural networks, 1999, 10(5): 988-999.
[21] HUANG Zeyi, WANG Haohan, XING E P, et al. Self-challenging improves cross-domain generalization[C]//Computer Vision–ECCV 2020. Cham: Springer International Publishing, 2020: 124-140.
[22] NAM H, LEE H, PARK J, et al. Reducing domain gap by reducing style bias[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 8686-8695.
[23] PARASCANDOLO G, NEITZ A, ORVIETO A, et al. Learning explanations that are hard to vary[C]//Proceedings of International Conference on Learning Representations. [S.l.]: PMLR, 2021: 1-24.
[24] SHAHTALEBI S, GAGNON-AUDET J C, LALEH T, et al. SAND-mask: an enhanced gradient masking strategy for the discovery of invariances in domain generalization[EB/OL]. (2021-06-04) [2025-01-07]. https://arxiv.org/pdf/2106.02266.
[25] SHI Yuge, SEELY J, TORR P, et al. Gradient matching for domain generalization[C]//Proceedings of International Conference on Learning Representations. [S.l.]: OpenReview.net, 2022: 1-28.
[26] RAME A, DANCETTE C, CORD M. Fishr: invariant gradient variances for out-of-distribution generalization[C]//Proceedings of International Conference on Machine Learning. Baltimore: OpenReview.net, 2022: 18347-18377.
[27] CHEN Liang, ZHANG Yong, SONG Yibing, et al. Domain generalization via rationale invariance[C]//2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 1751-1760.
[28] WANG Pengfei, ZHANG Zhaoxiang, LEI Zhen, et al. Sharpness-aware gradient matching for domain generalization[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 3769-3778.
[29] AMINBEIDOKHTI M, PE?A F A G, MEDEIROS H R, et al. Domain generalization by rejecting extreme augmentations[C]//2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2024: 2204-2214.
相似文献/References:
[1]王晓初,包芳,王士同,等.基于最小最大概率机的迁移学习分类算法[J].智能系统学报,2016,11(1):84.[doi:10.11992/tis.201505024]
 WANG Xiaochu,BAO Fang,WANG Shitong,et al.Transfer learning classification algorithms based on minimax probability machine[J].CAAI Transactions on Intelligent Systems,2016,11():84.[doi:10.11992/tis.201505024]
[2]王跃,杨燕,王红军.一种基于少量标签的改进迁移模糊聚类[J].智能系统学报,2016,11(3):310.[doi:10.11992/tis.201603046]
 WANG Yue,YANG Yan,WANG Hongjun.An improved transfer fuzzy clustering with few labels[J].CAAI Transactions on Intelligent Systems,2016,11():310.[doi:10.11992/tis.201603046]
[3]程旸,蒋亦樟,钱鹏江,等.知识迁移的极大熵聚类算法及其在纹理图像分割中的应用[J].智能系统学报,2017,12(2):179.[doi:10.11992/tis.201603005]
 CHENG Yang,JIANG Yizhang,QIAN Pengjiang,et al.A maximum entropy clustering algorithm based on knowledge transfer and its application to texture image segmentation[J].CAAI Transactions on Intelligent Systems,2017,12():179.[doi:10.11992/tis.201603005]
[4]许敏,史荧中,葛洪伟,等.一种具有迁移学习能力的RBF-NN算法及其应用[J].智能系统学报,2018,13(6):959.[doi:10.11992/tis.201705021]
 XU Min,SHI Yingzhong,GE Hongwei,et al.A RBF-NN algorithm with transfer learning ability and its application[J].CAAI Transactions on Intelligent Systems,2018,13():959.[doi:10.11992/tis.201705021]
[5]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(6):967.[doi:10.11992/tis.201801025]
 MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13():967.[doi:10.11992/tis.201801025]
[6]凌彤,杨琬琪,杨明.利用多模态U形网络的CT图像前列腺分割[J].智能系统学报,2018,13(6):981.[doi:10.11992/tis.201806012]
 LING Tong,YANG Wanqi,YANG Ming.Prostate segmentation in CT images with multimodal U-net[J].CAAI Transactions on Intelligent Systems,2018,13():981.[doi:10.11992/tis.201806012]
[7]余鹰,王乐为,吴新念,等.基于改进卷积神经网络的多标记分类算法[J].智能系统学报,2019,14(3):566.[doi:10.11992/tis.201804056]
 YU Ying,WANG Lewei,WU Xinnian,et al.A multi-label classification algorithm based on an improved convolutional neural network[J].CAAI Transactions on Intelligent Systems,2019,14():566.[doi:10.11992/tis.201804056]
[8]洪雁飞,魏本征,刘川,等.基于深度学习的椎间孔狭窄自动多分级研究[J].智能系统学报,2019,14(4):708.[doi:10.11992/tis.201806015]
 HONG Yanfei,WEI Benzheng,LIU Chuan,et al.Deep learning based automatic multi-classification algorithm for intervertebral foraminal stenosis[J].CAAI Transactions on Intelligent Systems,2019,14():708.[doi:10.11992/tis.201806015]
[9]鲁绪正,蔡恒进,林莉.基于Capsule网络的甲骨文构件识别方法[J].智能系统学报,2020,15(2):243.[doi:10.11992/tis.201904069]
 LU Xuzheng,CAI Hengjin,LIN Li.Recognition of Oracle Radical based on the Capsule network[J].CAAI Transactions on Intelligent Systems,2020,15():243.[doi:10.11992/tis.201904069]
[10]商显震,韩萌,王少峰,等.融合迁移学习和神经网络的皮肤病诊断方法[J].智能系统学报,2020,15(3):452.[doi:10.11992/tis.201811015]
 SHANG Xianzhen,HAN Meng,WANG Shaofeng,et al.A skin diseases diagnosis method combining transfer learning and neural networks[J].CAAI Transactions on Intelligent Systems,2020,15():452.[doi:10.11992/tis.201811015]

备注/Memo

收稿日期:2025-1-7。
基金项目:交通运输部水运科学研究院博士科技创新项目(132415).
作者简介:李珊珊,工程师,博士,主要研究方向为图像智能信息处理、迁移学习和智能算法评测。发表学术论文10余篇。E-mail:liss0033@163.com。;赵清杰,教授,博士生导师,主要研究方向机器视觉和智能体系统。主持国家自然科学基金项目、国家重点研发计划项目等30余项。获发明专利授权30余项,发表学术论文200余篇,出版专著6部。E-mail:zhaoqj@bit.edu.cn。;朱文龙,高级工程师,主要研究方向为计算机视觉算法评测和智能评测系统。E-mail:78664659@qq.com。
通讯作者:赵清杰. E-mail:zhaoqj@bit.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com