[1]LU Yi,CHEN Yaran,ZHAO Dongbin,et al.Keypoint-based graph contrastive neural network for image classification[J].CAAI Transactions on Intelligent Systems,2023,18(1):36-46.[doi:10.11992/tis.202112001]

Keypoint-based graph contrastive neural network for image classification

[1] 黄凯奇, 任伟强, 谭铁牛. 图像物体分类与检测算法综述[J]. 计算机学报, 2014, 37(6): 1225–1240
HUANG Kaiqi, REN Weiqiang, TAN Tieniu. A review on image object classification and detection[J]. Chinese journal of computers, 2014, 37(6): 1225–1240
[2] 王亮申, 欧宗瑛, 朱玉才, 等. 基于SVM的图像分类[J]. 计算机应用与软件, 2005, 22(5): 98–99,126
WANG Liangshen, OU Zongying, ZHU Yucai, et al. Classifying images with SVM method[J]. Computer applications and software, 2005, 22(5): 98–99,126
[3] 任越美, 张艳宁, 李映. 压缩感知及其图像处理应用研究进展与展望[J]. 自动化学报, 2014, 40(8): 1563–1574
REN Yuemei, ZHANG Yanning, LI Ying. LI Ying. Advances and perspective on compressed sensing an application on image processing[J]. Acta automaica sinica, 2014, 40(8): 1563–1574
[4] 马忠丽, 刘权勇, 武凌羽, 等. 一种基于联合表示的图像分类方法[J]. 智能系统学报, 2018, 13(2): 220–226
MA Zhongli, LIU Quanyong, WU Lingyu, et al. Syncretic representation method for image classification[J]. CAAI transactions on intelligent systems, 2018, 13(2): 220–226
[5] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the acm, 2012, 60: 84–90.
[6] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014?09?04)[ 2021?12?01].https://arxiv.org/abs/1409.1556.
[7] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1?9.
[8] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770?778.
[9] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261?2269.
[10] BALDASSARRE F, MORíN D G, RODéS-GUIRAO L. Deep koalarization: image colorization using CNNs and inception-ResNet-v2[EB/OL]. (2017?12?09) [ 2021?12?01].https://arxiv.org/abs/1712.03400.
[11] CHEN Yaran, LI Haoran, GAO Ruiyuan, et al. Boost 3-D object detection via point clouds segmentation and fused 3-D GIoU-L1 loss[J]. IEEE transactions on neural networks and learning systems, 2022, 33(2): 762–773.
[12] CHEN Y, GAO R, LIU F, et al. ModuleNet: knowledge-inherited neural architecture search[J]. IEEE transactions on cybernetics, 2022, 52(11): 11661–11671.
[13] DING Zixiang, CHEN Yaran, LI Nannan, et al. BNAS: efficient neural architecture search using broad scalable architecture[J]. IEEE transactions on neural networks and learning systems, 2022, 33(9): 5004–5018.
[14] LI Nannan, PAN Yu, CHEN Yaran, et al. Heuristic rank selection with progressively searching tensor ring network[J]. Complex & intelligent systems, 2022, 8(2): 771–785.
[15] TAN Mingxing, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. (2019?05?28)[2021?12?01].https://arxiv.org/abs/1905.11946.
[16] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision. Cham: Springer, 2014: 818?833.
[17] GEIRHOS R, RUBISCH P, MICHAELIS C, et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness[EB/OL]. (2018?11?29)[2021?12?01].https://arxiv.org/abs/1811.12231.
[18] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999: 1150?1157.
[19] WEI Shihen, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4724?4732.
[20] WANG Jingdong, SUN Ke, CHENG Tianheng, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(10): 3349–3364.
[21] LU Yi, CHEN Yaran, ZHAO Dongbin, et al. CNN-G: convolutional neural network combined with graph for image segmentation with theoretical analysis[J]. IEEE transactions on cognitive and developmental systems, 2021, 13(3): 631–644.
[22] LU Yi, CHEN Yaran, ZHAO Dongbin, et al. Graph-FCN for image semantic segmentation[C]//International Symposium on Neural Networks. Cham: Springer, 2019: 97?105.
[23] 张勇, 高大林, 巩敦卫, 等. 用于关系抽取的注意力图长短时记忆神经网络[J]. 智能系统学报, 2021, 16(3): 518–527
ZHANG Yong, GAO Dalin, GONG Dunwei, et al. Attention graph long short-term memory neural network for relation extraction[J]. CAAI transactions on intelligent systems, 2021, 16(3): 518–527
[24] XU K, HU Weihua, LESKOVEC J, et al. How powerful are graph neural networks? [EB/OL]. (2018?10?01)[2021?12-01].https://arxiv.org/abs/1810.00826.
[25] CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 539?546.
[26] SOHN K. Improved deep metric learning with multi-class N-pair loss objective[C]//NIPS’16: Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 1857-1865.
[27] TAIGMAN Y, YANG Ming, RANZATO M, et al. DeepFace: closing the gap to human-level performance in face verification[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 1701?1708.
[28] CARON M, MISRA I, MAIRAL J, et al. Unsupervised learning of visual features by contrasting cluster assignments[EB/OL]. (2020?06?17)[2021?12?01].https://arxiv.org/abs/2006.09882.
[29] OORD A V D, LI YAZHE, VINYALS O. Representation learning with contrastive predictive coding[EB/OL]. (2018?07?10)[2021?12?01].https://arxiv.org/abs/1807.03748.
[30] CHEN Ting, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[EB/OL]. (2020?02?13)[2021?12?01].https://www.semanticscholar.org/paper/A-Simple-Framework-for-Contrastive-Learning-of-Chen-Kornblith/34733eaf66007516347a40ad5d9bbe1cc9dacb6b.
[31] HE Kaiming, FAN Haoqi, WU Yuxin, et al. Momentum contrast for unsupervised visual representation learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9726?9735.
[32] CHEN Xinlei, HE Kaiming. Exploring simple Siamese representation learning[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 15745?15753.
[33] ZHU Yanqiao, XU Yichen, YU Feng, et al. Graph contrastive learning with adaptive augmentation[C]//WWW ’21: Proceedings of the Web Conference 2021. New York: ACM, 2021: 2069-2080.
[34] WANG Runzhong, YAN Junchi, YANG Xiaokang. Learning combinatorial embedding networks for deep graph matching[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3056?3065.
[35] 张俊, 田慧敏. 一种基于边指针搜索及区域划分的三角剖分算法[J]. 自动化学报, 2021, 47(1): 100–107
ZHANG Jun, TIAN Huimin. A triangulation algorithm based on edge-pointer search and region-division[J]. Acta automatica sinica, 2021, 47(1): 100–107
[36] GUIBAS L J, KNUTH D E, SHARIR M. Randomized incremental construction of delaunay and Voronoi diagrams[M]//Automata, Languages and Programming. Berlin/Heidelberg: Springer-Verlag, 2005: 414?431.
[37] EVERINGHAM M, ESLAMI S, GOOL L, et al. The pascal visual object classes challenge: a retrospective[J]. International journal of computer vision, 2014, 111: 98–136.
Similar References:



Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems