[1]QIN Tian,TENG Qifa,JIA Xiuyi.Weakly supervised label distribution learning by maintaining local label ranking[J].CAAI Transactions on Intelligent Systems,2023,18(1):47-55.[doi:10.11992/tis.202204018]

Weakly supervised label distribution learning by maintaining local label ranking

[1] 耿新, 徐宁. 标记分布学习与标记增强[J]. 中国科学:信息科学, 2018, 48(5): 521–530
GENG Xin, XU Ning. Label distribution learning and label enhancement[J]. Scientia sinica:informationis, 2018, 48(5): 521–530
[2] 邵东恒, 杨文元, 赵红. 应用k-means算法实现标记分布学习[J]. 智能系统学报, 2017, 12(3): 325–332
SHAO Dongheng, YANG Wenyuan, ZHAO Hong. Label distribution learning based on k-means algorithm[J]. CAAI transactions on intelligent systems, 2017, 12(3): 325–332
[3] 王一宾, 李田力, 程玉胜. 结合谱聚类的标记分布学习[J]. 智能系统学报, 2019, 14(5): 966–973
WANG Yibin, LI Tianli, CHENG Yusheng. Label distribution learning based on spectral clustering[J]. CAAI transactions on intelligent systems, 2019, 14(5): 966–973
[4] 刘睿馨, 刘新媛, 李晨. 基于低秩表示的标记分布学习算法[J]. 模式识别与人工智能, 2021, 34(2): 146–156
LIU Ruixin, LIU Xinyuan, LI Chen. Label distribution learning method based on low-rank representation[J]. Pattern recognition and artificial intelligence, 2021, 34(2): 146–156
[5] MIAO Xu, ZHOU Zhihua. Incomplete label distribution learning[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence Main track. Melbourne: IJCAI, 2017: 3175?3181.
[6] JIA Xiuyi, REN Tingting, CHEN Lei, et al. Weakly supervised label distribution learning based on transductive matrix completion with sample correlations[J]. Pattern recognition letters, 2019, 125: 453–462.
[7] ZENG Xueqiang, CHEN Sufen, XIANG Run, et al. Filling missing values by local reconstruction for incomplete label distribution learning[J]. International journal of wireless and mobile computing, 2019, 16(4): 314.
[8] ZENG Xueqiang, CHEN Sufen, XIANG Run, et al. Incomplete label distribution learning based on supervised neighborhood information[J]. International journal of machine learning and cybernetics, 2020, 11(1): 111–121.
[9] XU Chao, GU Shilin, TAO Hong, et al. Fragmentary label distribution learning via graph regularized maximum entropy criteria[J]. Pattern recognition letters, 2021, 145: 147–156.
[10] 任婷婷. 基于数据相关性挖掘的标记分布学习算法研究[D]. 南京: 南京理工大学, 2020.
REN Tingting. Label distribution learning algorithm based on based on data correlation mining[D]. Nanjing: Nanjing University of Science and Technology, 2020.
[11] 游美琳. 基于层次结构的标记分布学习研究[D]. 武汉: 中南财经政法大学, 2020.
YOU Meilin. Research on label distribution learning based on hierarchical structure[D]. Wuhan: Zhongnan University of Economics and Law, 2020.
[12] Abdi H. The method of least squares[J]. Encyclopedia of measurement and statistics, 2007, 1: 530–532.
[13] WE Deming. XI. The application of least squares[J]. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 1931, 11(68): 146–158.
[14] HUANG Jun, QIN Feng, ZHENG Xiao, et al. Improving multi-label classification with missing labels by learning label-specific features[J]. Information sciences, 2019, 492: 124–146.
[15] CHENG Yusheng, QIAN Kun, MIN Fan. Global and local attention-based multi-label learning with missing labels[J]. Information sciences, 2022, 594: 20–42.
[16] LI Xue, SHEN Bin, LIU Baodi, et al. Ranking-preserving low-rank factorization for image annotation with missing labels[J]. IEEE transactions on multimedia, 2018, 20(5): 1169–1178.
[17] JIA Xiuyi, SHEN Xiaoxia, LI Weiwei, et al. Label distribution learning by maintaining label ranking relation[J]. IEEE transactions on knowledge and data engineering, 2021(99): 1.
[18] LIU Dong C, NOCEDAL J. On the limited memory BFGS method for large scale optimization[J]. Mathematical programming, 1989, 45(1/2/3): 503–528.
[19] EISEN M B, SPELLMAN P T, BROWN P O, et al. Cluster analysis and display of genome-wide expression patterns[J]. Proceedings of the national academy of sciences of the United States of America, 1998, 95(25): 14863–14868.
[20] LYONS M, AKAMATSU S, KAMACHI M, et al. Coding facial expressions with Gabor wavelets[C]//Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition. Nara: IEEE, 1998: 200?205.
[21] YIN Lijun, WEI Xiaozhou, SUN Yi, et al. A 3D facial expression database for facial behavior research[C]//7th International Conference on Automatic Face and Gesture Recognition. Southampton: IEEE, 2006: 211?216.
[22] PENG Kuanchuan, CHEN T, SADOVNIK A, et al. A mixed bag of emotions: model, predict, and transfer emotion distributions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 860?868.
[23] YANG Jufeng, SUN Ming, SUN Xiaoxiao. Learning visual sentiment distributions via augmented conditional probability neural network[C]//AAAI’17: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. New York: ACM, 2017: 224?230.
[24] CHA S H. Comprehensive survey on distance/similarity measures between probability density functions[J]. International journal of mathematical models and methods in applied sciences, 2007, 1(4): 300–307.
[25] SPEARMAN C. The proof and measurement of association between two things[J]. International journal of epidemiology, 2010, 39(5): 1137–1150.
Similar References:



Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems