[1]TAO Xinyu,WANG Yan,JI Zhicheng.Energy-saving process route discovery method based on deep reinforcement learning[J].CAAI Transactions on Intelligent Systems,2023,18(1):23-35.[doi:10.11992/tis.202112030]

Energy-saving process route discovery method based on deep reinforcement learning

[1] HALIM A H, ISMAIL I. Combinatorial optimization: comparison of heuristic algorithms in travelling salesman problem[J]. Archives of computational methods in engineering, 2019, 26(2): 367–380.
[2] REZOUG A, BADER-EL-DEN M, BOUGHACI D. Guided genetic algorithm for the multidimensional knapsack problem[J]. Memetic computing, 2018, 10(1): 29–42.
[3] KIEFFER E, DANOY G, BRUST M R, et al. Tackling large-scale and combinatorial bi-level problems with a genetic programming hyper-heuristic[J]. IEEE transactions on evolutionary computation, 2020, 24(1): 44–56.
[4] 陈科胜, 鲜思东, 郭鹏. 求解旅行商问题的自适应升温模拟退火算法[J]. 控制理论与应用, 2021, 38(2): 245–254
CHEN Kesheng, XIAN Sidong, GUO Peng. Adaptive heating simulation annealing algorithm for solving the traveling salesman problem[J]. Control theory & applications, 2021, 38(2): 245–254
[5] 何庆, 吴意乐, 徐同伟. 改进遗传模拟退火算法在TSP优化中的应用[J]. 控制与决策, 2018, 33(2): 219–225
HE Qing, WU YIle, XU Tongwei. Improve the application of genetic simulation annealing algorithm in TSP optimization[J]. Control and decision, 2018, 33(2): 219–225
[6] JOY J, RAJEEV S, ABRAHAM E C. Particle swarm optimization for multi resource constrained project scheduling problem with varying resource levels[J]. Materials today:proceedings, 2021, 47: 5125–5129.
[7] PETROVI? M, VUKOVI? N, MITI? M, et al. Integration of process planning and scheduling using chaotic particle swarm optimization algorithm[J]. Expert systems with applications, 2016, 64: 569–588.
[8] VAFADAR A, HAYWARD K, TOLOUEI-RAD M. Drilling reconfigurable machine tool selection and process parameters optimization as a function of product demand[J]. Journal of manufacturing systems, 2017, 45: 58–69.
[9] WU Xiuli, LI Jing. Two layered approaches integrating harmony search with genetic algorithm for the integrated process planning and scheduling problem[J]. Computers & industrial engineering, 2021, 155: 107194.
[10] MA G H, ZHANG Y F, NEE A Y C. A simulated annealing-based optimization algorithm for process planning[J]. International journal of production research, 2000, 38(12): 2671–2687.
[11] 施伟, 冯旸赫, 程光权, 等. 基于深度强化学习的多机协同空战方法研究[J]. 自动化学报, 2021, 47(7): 1610–1623
SHI Wei, FENG Yanghe, CHENG Guangquan, et al. Research on multi-aircraft collaborative air combat method based on deep reinforcement learning[J]. Acta automatica sinica, 2021, 47(7): 1610–1623
[12] ZHOU Wenhong, LIU Zhihong, LI Jie, et al. Multi-target tracking for unmanned aerial vehicle swarms using deep reinforcement learning[J]. Neurocomputing, 2021, 466: 285–297.
[13] 王云鹏, 郭戈. 基于深度强化学习的有轨电车信号优先控制[J]. 自动化学报, 2019, 45(12): 2366–2377
WANG Yunpeng, GUO Ge. Tram signal priority control based on deep reinforcement learning[J]. Acta automatica sinica, 2019, 45(12): 2366–2377
[14] GUO Ge, WANG Yunpeng. An integrated MPC and deep reinforcement learning approach to trams-priority active signal control[J]. Control engineering practice, 2021, 110(5): 104758.
[15] PENG Bile, KESKIN M F, Kulcsár B, et al. Connected autonomous vehicles for improving mixed traffic efficiency in unsignalized intersections with deep reinforcement learning[J]. Communications in transportation research, 2021, 1: 100017.
[16] 吴晓光, 刘绍维, 杨磊, 等. 基于深度强化学习的双足机器人斜坡步态控制方法[J]. 自动化学报, 2021, 47(8): 1976–1987
WU Xiaoguang LIU Shaowei, YANG Lei, et al. A slope gait control method for bipedal robots based on deep reinforcement learning[J]. Acta automatica sinica, 2021, 47(8): 1976–1987
[17] JIANG Rong, WANG Zhipeng, HE Bin, et al. A data-efficient goal-directed deep reinforcement learning method for robot visuomotor skill[J]. Neurocomputing, 2021, 462: 389–401.
[18] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016, 529: 484–489.
[19] VINYALS O, BABUSCHKIN I, CZARNECKI W M, et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning[J]. Nature, 2019, 575: 350–354.
[20] BERNER C, et al. Dota 2 with large scale deep reinforcement learning[EB/OL]. (2019?10?1)[2021?12?14].https://arxiv.org/abs/1912.06680.
[21] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning[EB/OL]. (2013?12?19) [2021?12?14]. https://arxiv.org/abs/1312.5602.
[22] LUO Shu, ZHANG Linxuan, FAN Yushun. Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning[J]. Computers & industrial engineering, 2021, 159: 107489.
[23] SCHAUL T, QUAN J, ANTONOGLOU I, et al. Prioritized experience replay[EB/OL]. (2016?2?25) [2021?12?14]. https://arxiv.org/abs/1511.05952.
[24] VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning[EB/OL]. (2015?12?8)[2021?12?14]. https://arxiv.org/abs/1509.06461.
[25] LIU Xiaojun, YI Hong, NI Zhonghua. Application of ant colony optimization algorithm in process planning optimization[J]. Journal of intelligent manufacturing, 2013, 24(1): 1–13.
Similar References:



Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems