[1]石拓,张齐,石磊.多尺度视角特征动态融合的盗窃犯罪预测模型[J].智能系统学报,2022,17(6):1104-1112.[doi:10.11992/tis.202203016]
 SHI Tuo,ZHANG Qi,SHI Lei.Prediction model of theft crime based on the dynamic fusion of multiscale perspective characteristics[J].CAAI Transactions on Intelligent Systems,2022,17(6):1104-1112.[doi:10.11992/tis.202203016]
点击复制

多尺度视角特征动态融合的盗窃犯罪预测模型

参考文献/References:
[1] 于洪岭. 侵财类犯罪中“非法占有目的”的认定[J]. 中国检察官, 2016(18): 27–30
YU Hongling. Identification of “purpose of illegal possession”in the crime of infringing property[J]. The Chinese procurators, 2016(18): 27–30
[2] 付逸飞. 入户盗窃犯罪的时空分布热点及其机理研究: 以A市CP区警情分析为例[J]. 世界地理研究, 2021, 30(5): 1005–1014
FU Yifei. Study on the temporal-spatial distribution hot-spots and mechanisms in burglary: based on the analysis of policing alert in City A District CP[J]. World regional studies, 2021, 30(5): 1005–1014
[3] 刘熊. 多发性侵财犯罪侦查中的大数据应用研究[D]. 北京: 中国人民公安大学, 2017.
LIU Xiong. Study on the application of big data in the frequent property-related crimes investigation[D]. Beijing: Chinese People’s Public Security University, 2017.
[4] 石拓. 社会环境数据视角下的犯罪空间情报分析模式研究[J]. 中国人民公安大学学报(社会科学版), 2019, 35(3): 29–36
SHI Tuo. Research on the analysis mode of crime spatial information from the perspective of social environmental data[J]. Journal of People’s public security university of China (social sciences edition), 2019, 35(3): 29–36
[5] 颜靖华, 侯苗苗. 基于LSTM网络的盗窃犯罪时间序列预测研究[J]. 数据分析与知识发现, 2020, 4(11): 84–91
YAN Jinghua, HOU Miaomiao. Predicting time series of theft crimes based on LSTM network[J]. Data analysis and knowledge discovery, 2020, 4(11): 84–91
[6] 沈寒蕾, 张虎, 张耀峰, 等. 基于长短期记忆模型的入室盗窃犯罪预测研究[J]. 统计与信息论坛, 2019, 34(11): 107–115
SHEN Hanlei, ZHANG Hu, ZHANG Yaofeng, et al. Prediction of burglary crime based on LSTM[J]. Statistics & information forum, 2019, 34(11): 107–115
[7] 朱小波, 次晋芳. 基于改进PSO-BP神经网络算法在一般盗窃犯罪预测中的应用[J]. 计算机应用与软件, 2020, 37(1): 37–42, 75
ZHU Xiaobo, CI Jinfang. Application of improved pso-bp neural network algorithm in the prediction of theft crime[J]. Computer applications and software, 2020, 37(1): 37–42, 75
[8] 陈笛. 盗窃类犯罪的时间序列分析: 以H市X区盗窃类报警数据为例[D]. 北京: 中国人民公安大学, 2017.
CHEN Di. Time series analysis of theft—a case study base on the police calling data of X district in H city[D]. Beijing: Chinese People’s Public Security University, 2017.
[9] 石拓, 蒋伟, 张晶晶, 等. 基于集成特征选择的盗窃案件预测方法[J]. 北京理工大学学报, 2018, 38(9): 958–990
SHI Tuo, JIANG Wei, ZHANG Jingjing, et al. Theft prediction method based on ensemble features selection[J]. Transactions of Beijing Institute of Technology, 2018, 38(9): 958–990
[10] 翟一鸣, 丁宁, 李成龙. 基于节假日因素的多尺度犯罪时序预测方法研究[J]. 中国人民公安大学学报(自然科学版), 2020, 26(3): 78–84
ZHAI Yiming, DING Ning, LI Chenglong. Research on multi-scale crime time series prediction method considering holiday factors[J]. Journal of People’s Public Security University of China (science and technology edition), 2020, 26(3): 78–84
[11] HU Tao, ZHU Xinyan, DUAN Lian, et al. Urban crime prediction based on spatio-temporal Bayesian model[J]. PLoS One, 2018, 13(10): e0206215.
[12] 顾海硕, 陈鹏, 李慧波. 犯罪时空预测方法研究综述与展望[J]. 地球信息科学学报, 2021, 23(1): 43–57
GU Haishuo, CHEN Peng, LI Huibo. A review and prospect of the research on space-time prediction methods of crime[J]. Journal of geo-information science, 2021, 23(1): 43–57
[13] LIN Y L, YEN M F, YU L C. Grid-based crime prediction using geographical features[J]. ISPRS international journal of geo-information, 2018, 7(8): 298.
[14] 邢红涛, 郭江龙, 刘书安, 等. 基于CNN-LSTM混合神经网络模型的NO x排放预测[J]. 电子测量技术, 2022, 45(2): 98–103
XING Hongtao, GUO Jianglong, LIU Shu’an, et al. NOx emission prediction based on cnn-lstm-hybrid neural networkmodel[J]. Electronic measurement techno- logy, 2022, 45(2): 98–103
[15] 刘永乐, 谷远利. 基于CNN-BiLSTM的高速公路交通流量时空特性预测[J]. 交通科技与经济, 2022, 24(1): 9–18
LIU Yongle, GU Yuanli. Prediction of temporal and spatial characteristics of freeway traffic flow based on CNN-BiLSTM[J]. Technology & economy in areas of communications, 2022, 24(1): 9–18
[16] 郭应时, 张瑞宾, 陈元华, 等. 基于观测数据潜在特征与双向长短期记忆网络的车辆轨迹预测[J]. 汽车技术, 2022(3): 21–27
GUO Yingshi, ZHANG Ruibin, CHEN Yuanhua, et al. Vehicle trajectory prediction based on potential features of observation data and bidirectional long short-term memory network[J]. Automobile technology, 2022(3): 21–27
[17] 赵长伟, 骈睿珺, 杜天硕, 等. 基于LSTM的重要用户电能质量趋势预测分析模型[J]. 电力系统及其自动化学报, 2022, 34(7): 26–33
ZHAO Changwei, PIAN Ruijun, DU Tianlei, et al. Power quality trend prediction and analysis model of important users based on LSTM[J]. Proceedings of the CSU-EPSA, 2022, 34(7): 26–33
[18] ZHANG Xu, LIU Lin, XIAO Luzi, et al. Comparison of machine learning algorithms for predicting crime hotspots[J]. IEEE access, 2020(8): 181302–181310.
[19] SAFAT W, ASGHAR S, GILLANI S A. Empirical analysis for crime prediction and forecasting using machine learning and deep learning techniques[J]. IEEE access, 2021(9): 70080–70094.
[20] 李倩玉, 王蓓, 金晶, 等. 基于双向LSTM卷积网络与注意力机制的自动睡眠分期模型[J]. 智能系统学报, 2022(3): 523–530
LI Qianyu, WANG Bei, JIN Jing, et al. Automatic sleep staging model based on the bi-directional LSTM convolutional network and attention mechanism[J]. CAAI transactions on intelligent systems, 2022(3): 523–530
[21] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[EB/OL]. (2014-04-28)[2022-03-14]. https: //arxiv. org/abs/1404.2188.https://arxiv.org/abs/1404.2188.
[22] 单勇, 王熠. “建设更高水平的平安中国”的新展开: 犯罪热点稳定性的再验证及其启示[J]. 河南社会科学, 2021, 29(9): 73–81
SHAN Yong, WANG Yi. Some new thoughts on the peaceful China construction—the re-verification and enlightenment of the stability of crime hotspots[J]. Henan social sciences, 2021, 29(9): 73–81
[23] 孙畅, 翟一鸣, 丁宁, 等. 入室盗窃犯罪时空分布与预测研究: 以B市为例[J]. 绥化学院学报, 2021, 41(3): 19–22
SUN Chang, ZHAI Yiming, DING Ning, et al. Research on spatial and temporal distribution and prediction of burglary: a case study of city B[J]. Journal of Suihua University, 2021, 41(3): 19–22
[24] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. (2014-12-22)[2022-3-14]. https: //arxiv. org/abs/1412.6980https://arxiv.org/abs/1412.6980.
[25] 王海林, 陈鹏, 井晓龙. 基于Aoristic方法的多发性案件发案时间特征分析[J]. 中国人民公安大学学报(自然科学版), 2021, 27(3): 93–101
WANG Hailin, CHEN Peng, JING Xiaolong. Analysis of the time characteristic of multiple cases based on the aoristic method[J]. Journal of People’s Public Security University of China (science and technology edition), 2021, 27(3): 93–101
相似文献/References:
[1]汪权彬,谭营.基于数据增广和复制的中文语法错误纠正方法[J].智能系统学报,2020,15(1):99.[doi:10.11992/tis.202001014]
 WANG Quanbin,TAN Ying.Chinese grammatical error correction method based on data augmentation and copy mechanism[J].CAAI Transactions on Intelligent Systems,2020,15():99.[doi:10.11992/tis.202001014]
[2]毛明毅,吴晨,钟义信,等.加入自注意力机制的BERT命名实体识别模型[J].智能系统学报,2020,15(4):772.[doi:10.11992/tis.202003003]
 MAO Mingyi,WU Chen,ZHONG Yixin,et al.BERT named entity recognition model with self-attention mechanism[J].CAAI Transactions on Intelligent Systems,2020,15():772.[doi:10.11992/tis.202003003]
[3]鲍维克,袁春.面向推荐系统的分期序列自注意力网络[J].智能系统学报,2021,16(2):353.[doi:10.11992/tis.202005028]
 BAO Weike,YUAN Chun.Recommendation system with long-term and short-term sequential self-attention network[J].CAAI Transactions on Intelligent Systems,2021,16():353.[doi:10.11992/tis.202005028]
[4]李祥宇,隋璘,熊伟丽.基于自注意力机制与卷积ONLSTM网络的软测量算法[J].智能系统学报,2023,18(5):957.[doi:10.11992/tis.202211037]
 LI Xiangyu,SUI Lin,XIONG Weili.Soft sensor algorithm based on self-attention mechanism and convolutional ONLSTM network[J].CAAI Transactions on Intelligent Systems,2023,18():957.[doi:10.11992/tis.202211037]
[5]梁艳,温兴,潘家辉.融合全局与局部特征的跨数据集表情识别方法[J].智能系统学报,2023,18(6):1205.[doi:10.11992/tis.202212030]
 LIANG Yan,WEN Xing,PAN Jiahui.Cross-dataset facial expression recognition method fusing global and local features[J].CAAI Transactions on Intelligent Systems,2023,18():1205.[doi:10.11992/tis.202212030]

备注/Memo

收稿日期:2022-03-09。
基金项目:国家社会科学基金青年项目(21CHS005);中国传媒大学中央高校基本科研业务费专项资金项目(CUC220C011).
作者简介:石拓,副教授,主要研究方向为犯罪预测、预防警务。承担国家社会科学基金、国家重点研发计划项目等多项课题。发表学术论文40余篇;张齐,副教授,主要研究方向为犯罪统计、警务数据挖掘、情报技术。发表学术论文30余篇;石磊,助理研究员,中国人工智能学会智能服务专委会委员,主要研究方向为智能信息处理、大数据分析与挖掘、社交网络搜索及人工智能。发表学术论文20余篇
通讯作者:石磊.E-mail:leikyshi@qq.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com