[1]肖京,王磊,杨余久,等.感知认知技术在金融风险预警中的应用研究[J].智能系统学报,2021,16(5):941-961.[doi:10.11992/tis.202107027]
 XIAO Jing,WANG Lei,YANG Yujiu,et al.A systematic review of perceptual cognitive technology and its application in the field of financial risk early warning[J].CAAI Transactions on Intelligent Systems,2021,16(5):941-961.[doi:10.11992/tis.202107027]
点击复制

感知认知技术在金融风险预警中的应用研究

参考文献/References:
[1] CHEN Jianwei, LIN Wanju, CHENG Huijun, et al. A smartphone-based application for scale pest detection using multiple-object detection methods[J]. Electronics, 2021, 10(4): 372.
[2] GARCíA D. Sentiment during recessions[J]. The journal of finance, 2013, 68(3): 1267–1300.
[3] KUMAR P, SAJJAD H, JOSHI P K, et al. Modeling the luminous intensity of Beijing, China using DMSP-OLS night-time lights series data for estimating population density[J]. Physics and chemistry of the earth, parts A/B/C, 2019, 109: 31–39.
[4] ZHONG Yang, LIN Aiwei, ZHOU Zhigao, et al. Spatial pattern evolution and optimization of urban system in the Yangtze River economic belt, China, based on DMSP-OLS night light data[J]. Sustainability, 2018, 10(10): 3782.
[5] KIANPISHEH M, LI F N, TRUONG K N. Face recognition assistant for people with visual impairments[J]. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, 2019, 3(3): 90.
[6] BAKER S R, BLOOM N, DAVIS S J. Measuring economic policy uncertainty[J]. The quarterly journal of economics, 2016, 131(4): 1593–1636.
[7] SHAPIRO A H, SUDHOF M, WILSON D, et al. Measuring news sentiment[J]. Fereral reserve bank of San Francisco working paper, 2017: 1–49
[8] THORSRUD L A. Words are the new numbers: a newsy coincident index of the business cycle[J]. Journal of business & economic statistics, 2020, 38(2): 393–409.
[9] HILLERT A, JACOBS H, MüLLER S. Media makes momentum[J]. The review of financial studies, 2014, 27(12): 3467–3501.
[10] BEN-REPHAEL A, DA Zhi, ISRAELSEN R D. It depends on where you search: institutional investor attention and underreaction to news[J]. The review of financial studies, 2017, 30(9): 3009–3047.
[11] TETLOCK P C. Giving content to investor sentiment: the role of media in the stock market[J]. The journal of finance, 2007, 62(3): 1139–1168.
[12] HILLERT A, JACOBS H, MüLLER S. Journalist disagreement[J]. Journal of financial markets, 2018, 41: 57–76.
[13] HOBERG G, PHILLIPS G M. Text-based industry momentum[J]. Journal of financial and quantitative analysis, 2018, 53(6): 2355–2388.
[14] LI Feng. The information content of forward-looking statements in corporate filings-a na?ve Bayesian machine learning approach[J]. Journal of accounting research, 2010, 48(5): 1049–1102.
[15] LOUGHRAN T, MCDONALD B. When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks[J]. The journal of finance, 2011, 66(1): 35–65.
[16] JEGADEESH N, WU Di. Word power: a new approach for content analysis[J]. Journal of financial economics, 2013, 110(3): 712–729.
[17] LI Feng. Annual report readability, current earnings, and earnings persistence[J]. Journal of accounting and economics, 2008, 45(2/3): 221–247.
[18] LOUGHRAN T, MCDONALD B. Measuring readability in financial disclosures[J]. The journal of finance, 2014, 69(4): 1643–1671.
[19] ANTWEILER W, FRANK M Z. Is all that talk just noise? the information content of internet stock message boards[J]. The journal of finance, 2004, 59(3): 1259–1294.
[20] KIM S H, KIM D. Investor sentiment from internet message postings and the predictability of stock returns[J]. Journal of economic behavior & organization, 2014, 107: 708–729.
[21] TSUKIOKA Y, YANAGI J, TAKADA T. Investor sentiment extracted from internet stock message boards and IPO puzzles[J]. International review of economics & finance, 2018, 56: 205–217.
[22] HARIHARAN B, ARBELáEZ P, GIRSHICK R, et al. Simultaneous detection and segmentation[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland, 2014: 297–312.
[23] HARIHARAN B, ARBELáEZ P, GIRSHICK R, et al. Hypercolumns for object segmentation and fine-grained localization[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 447–456.
[24] DAI Jifeng, HE Kaiming, SUN Jian. Instance-aware semantic segmentation via multi-task network cascades[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 3150–3158.
[25] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017: 2980–2988.
[26] ANDREJ KARPATHY, LI Feifei. Deep visual-semantic alignments for generating image descriptions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA, 2015: 3128–3137.
[27] XU K, BA J L, KIROS R, et al. Show, attend and tell: neural image caption generation with visual attention[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille, France, 2015: 2048–2057.
[28] WU Qi, SHEN Chunhua, WANG Peng, et al. Image captioning and visual question answering based on attributes and external knowledge[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(6): 1367–1381.
[29] KANG Kai, LI Hongsheng, YAN Junjie, et al. T-CNN: tubelets with convolutional neural networks for object detection from videos[J]. IEEE transactions on circuits and systems for video technology, 2018, 28(10): 2896–2907.
[30] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai, USA, 2001:511–518.
[31] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005: 886–893.
[32] FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008: 1–8.
[33] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 580–587.
[34] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904–1916.
[35] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 1440–1448.
[36] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015). Montreal, Quebec, Canada, 2015:91–99.
[37] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770–778,
[38] KONG Tao, YAO Anbang, CHEN Yurong, et al. HyperNet: towards accurate region proposal generation and joint object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 845–853.
[39] DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain, 2016: 379–387.
[40] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 936–944.
[41] BAEK Y, LEE B, HAN D, et al. Character region awareness for text detection[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA, 2019: 9357–9366.
[42] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 779–788.
[43] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 6517–6525.
[44] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08).https://arxiv.org/abs/1804.02767.
[45] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23).https://arxiv.org/abs/2004.10934.
[46] SHAFIEE M J, CHYWL B, LI F, Wong Aet al. Fast YOLO: a fast you only look once system for real-time embedded object detection in video[EB/OL].(2017-09-18). https://arxiv.org/abs/1709.05943.
[47] SIMON M, MILZ S, AMENDE K, et al. Complexer-YOLO: real-time 3D object detection and tracking on semantic point clouds[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach California, USA, 2019:1190–1199.
[48] HURTIK P, MOLEK V, HULA J, et al. Poly-YOLO: higher speed, more precise detection and instance segmentation for YOLOv3[J]. (2020-05-27). https://arxiv.org/abs/2005.13243.
[49] LONG Xiang, DENG Kaipeng, WANG Guanzhong, et al. PP-YOLO: an effective and efficient implementation of object detector[J]. (2020-07-23). https://arxiv.org/abs/2007.12099.
[50] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016: 21–37.
[51] FU Chengyang, LIU Wei, RANGA A, et al. DSSD: Deconvolutional single shot detector[J]. arXiv preprint arXiv:1701.06659. (2017-01-23). https://arxiv.org/abs/1701.06659.
[52] SHEN Zhiqiang, LIU Zhuang, LI Jianguo, et al. DSOD: learning deeply supervised object detectors from scratch[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017: 1937–1945.
[53] JEONG J, PARK H, KWAK N. Enhancement of SSD by concatenating feature maps for object detection[J]. (2017-05-26). https://arxiv.org/abs/1705.09587.
[54] ZHAO Qijie, SHENG Tao, WANG Yongtao, et al. M2Det: a single-shot object detector based on multi-level feature pyramid network[J]. Proceedings of the AAAI conference on artificial intelligence, 2019, 33(1): 9529–9266.
[55] ZHANG Shifeng, WEN Longyin, BIAN Xiao, et al. Single-shot refinement neural network for object detection[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 4203–4212.
[56] ZHAI Sheping, SHANG Dingrong, WANG Shuhuan, et al. DF-SSD: an improved SSD object detection algorithm based on DenseNet and feature fusion[J]. IEEE access, 2020, 8: 24344–24357.
[57] ZHOU Shuren, QIU Jia. Enhanced SSD with interactive multi-scale attention features for object detection[J]. Multimedia tools and applications, 2021, 80(8): 11539–11556.
[58] PAPAGEORGIOU C, POGGIO T. A trainable system for object detection[J]. International journal of computer vision, 2000, 38(1): 15–33.
[59] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324.
[60] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, 2012:1–9.
[61] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA, 2015:1–14.
[62] C. SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 1–9.
[63] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 2818–2826.
[64] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, California, USA, 2017:1–12.
[65] CHEN Wanpei, QIAO Yanting, LI Yujie. Inception-SSD: an improved single shot detector for vehicle detection[J]. Journal of ambient intelligence and humanized computing, 2020,5:1–7.
[66] ALOM M Z, HASAN M, YAKOPCIC C, et al. Inception recurrent convolutional neural network for object recognition[J]. Machine vision and applications, 2021, 32(1): 28.
[67] TIAN Zhi, HUANG Weilin, HE Tong, et al. Detecting text in natural image with connectionist text proposal network[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016:1–17.
[68] LIAO Minghui, WAN Zhaoyi, YAO Cong, et al. Real-time scene text detection with differentiable binarization[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(7): 11474–11481.
[69] ELAGOUNI K, GARCIA C, MAMALET F, et al. Text recognition in videos using a recurrent connectionist approach[C]//Proceedings of the 22th International Conference on Artificial Neural Networks. Lausanne, Switzerland, 2012: 172–179.
[70] CAO Chunshui, LIU Xianming, YANG Yi, et al. Look and think twice: capturing top-down visual attention with feedback convolutional neural networks[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 2956–2964.
[71] WOJNA Z, GORBAN A N, LEE D S, et al. Attention-based extraction of structured information from street view imagery[C]//Proceedings of the 14th IAPR International Conference on Document Analysis and Recognition. Kyoto, Japan, 2017: 844–850.
[72] SHI Baoguang, BAI Xiang, YAO Cong. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(11): 2298–2304.
[73] XUE Wenyuan, LI Qingyuong, ZHANG Zhen, et al. Table analysis and information extraction for medical laboratory reports[C]//Proceedings of the 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech). Athens, Greece, 2018: 193–199.
[74] MARTíNEK J, LENC L, KRáL P. Building an efficient OCR system for historical documents with little training data[J]. Neural computing and applications, 2020, 32(3): 17209–17227.
[75] HUANG Jing, PANG Guan, KOVVURI R, et al. A multiplexed network for End-to-End, multilingual OCR[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 4547–4557.
[76] SHOTTON J, JOHNSON M, CIPOLLA R. Semantic texton forests for image categorization and segmentation[C]//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008: 1–8.
[77] SHOTTON J, FITZGIBBON A, COOK M, et al. Real-time human pose recognition in parts from single depth images[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA, 2011: 1297–1304.
[78] CIRESAN D C, GIUSTI A, GAMBARDELLA L, et al. Deep neural networks segment neuronal membranes in electron microscopy images[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, 2012:2852–2860.
[79] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 3431–3440.
[80] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany, 2015: 234–241.
[81] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//Proceedings of the 4th International Conference on Learning Representations. San Juan, Puerto Rico, 2016:1–13.
[82] KR?HENBüHL P, KOLTUN V. Efficient inference in fully connected CRFs with Gaussian edge potentials[C]//Proceedings of the 24th International Conference on Neural Information Processing Systems. Granada, Spain, 2011:1–9.
[83] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. (2014-12-22). https://arxiv.org/abs/1412.7062.
[84] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(4): 834–848.
[85] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. (2017-01-17). https://arxiv.org/abs/1706.05587.
[86] CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany, 2018: 833–851.
[87] SUN Guolei, WANG Wenguan, DAI Jifeng, et al. Mining cross-image semantics for weakly supervised semantic segmentation[C]//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK, 2020: 347–365.
[88] ARASLANOV N, ROTH S. Single-stage semantic segmentation from image labels[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA, 2020: 4252–4261.
[89] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010: 2544–2550.
[90] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//Proceedings of the 12th European Conference on Computer Vision. Florence, Italy, 2012: 702–715.
[91] GALOOGAHI H K, FAGG A, LUCEY S. Learning background-aware correlation filters for visual tracking[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017: 1144–1152.
[92] LI Yang, ZHU Jianke. A scale adaptive kernel correlation filter tracker with feature integration[C]//Proceedings of the European Conference on Computer Vision. Zurich, Switzerland, 2014: 254–265.
[93] DANELLJAN M, H?GER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking[C]//Proceedings of 2015 IEEE International Conference on Computer Vision Workshop. Santiago, Chile, 2015: 621–629.
[94] VOIGTLAENDER P, LUITEN J, TORR P H S, et al. Siam R-CNN: visual tracking by re-detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA, 2020: 6577–6587.
[95] FU Zhihong, LIU Qingjie, FU Zehua, et al. STMTrack: template-free visual tracking with space-time memory networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 13774–13783.
[96] MIKOLOV T, CHEN Kai, CORRADO G, et al. Efficient estimation of word representations in vector space[C]//Proceedings of the 1st International Conference on Learning Representations. Scottsdale, Arizona, USA, 2013:1–9.
[97] JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Valencia, Spain, 2017:1–5.
[98] PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Qatar, 2014:1532–1543.
[99] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. New Orleans, Louisiana, 2018:1–15.
[100] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735–1780.
[101] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. (2014-12-11). https://arXiv:1412.3555, 2014.
[102] T DDESELL T, ELSAID A, ORORBIA A G. An empirical exploration of deep recurrent connections using neuro-evolution[C]//Proceedings of the 23rd International Conference on the Applications of Evolutionary Computation (Part of EvoStar). Seville, Spain, 2020:1–16.
[103] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA, 2017: 6000–6010.
[104] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA, 2015:1–15.
[105] HU Dichao. An introductory survey on attention mechanisms in NLP problems[C]//Proceedings of SAI Intelligent Systems Conference. Cham, Germany, 2020:1–9.
[106] DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. (2019-10-11). https://arXiv:1810.04805, 2019.
[107] TAYLOR W L. Cloze procedure: a new tool for measuring readability[J]. Journalism & mass communication quarterly, 1953, 30(4): 415–433.
[108] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[J]. Computation and language, 2017, 4(6):212–220.
[109] LIU Yinhan, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[J]. (2019-07-26). https://arXiv:1907.11692, 2019.
[110] YANG Zhilin, DAI Zihang, YANG Yiming, et al. XLNet: generalized autoregressive pretraining for language understanding[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, USA, 2019:1–11.
[111] SONG Kaitao, TAN Xu, QIN Tao, et al. MASS: masked sequence to sequence pre-training for language generation[J]. (2019-05-07). https://arXiv:1905.02450, 2019.
[112] RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. (2019-10-23). https://arXiv:1910.10683, 2020.
[113] SUN Yu, WANG Shuohuan, LI Yukun, et al. ERNIE: enhanced representation through knowledge integration[J]. (2019-04-19). https://arXiv:1904.09223, 2019.
[114] ZAHEER M, GURUGANESH G, DUBEY A, et al. Big bird: transformers for longer sequences[J]. (2020-07-28). https://arXiv:2007.14062, 2021.
[115] JIANG Zihang, YU Weihao, ZHOU Daquan, et al. ConvBERT: improving BERT with span-based dynamic convolution[J]. (2020-08-06). https://arXiv:2008.02496, 2021.
[116] BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[J]. (2020-05-28). https://arXiv:2005.14165, 2020.
[117] Yang B, Liao Y. Research on enterprise risk knowledge graph based on multi-source data fusion[J]. Neural Computing and Applications, 2021: 1–14.
[118] BIROGUL S, TEMüR G, KSE U. YOLO object recognition algorithm and “buy-sell decision” model over 2D candlestick charts[J]. IEEE access, 2020, 8: 91894–91915.
[119] WANG Yanwei, LIU Huiqing, GUO Mingzhe, et al. Image recognition model based on deep learning for remaining oil recognition from visualization experiment[J]. Fuel, 2021, 291: 120216.
[120] HU Changbo, LI Qun, ZHANG Zhen, et al. A multimodal fusion framework for brand recognition from product image and context[C]//Proceedings of 2020 IEEE International Conference on Multimedia & Expo Workshops. London, UK, 2020:1–4.
[121] JIANG Xiaoheng, ZHANG Li, XU Mingliang, et al. Attention scaling for crowd counting[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA, 2020: 4705–4714.
[122] ZHANG Zehui, SUN Xuehong. Crowd density estimation based on convolutional neural network[C]//Proceedings of the 20th International Conference on Communication Technology. Nanning, China, 2020: 1509–1513.
[123] LIU Weizhe, SALZMANN M, FUA P. Estimating people flows to better count them in crowded scenes[C]//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK, 2020: 723–740.
[124] BELAN P, VANIN A S, NETZER E. Computer vision system for public illumination management[J]. International journal of computer applications, 2020, 175(31): 45–50.
[125] YANG Si, ZHENG Lihua, HE Peng, et al. High-throughput soybean seeds phenotyping with convolutional neural networks and transfer learning[J]. Plant methods, 2021, 17(1): 50.
[126] SAFONOVA A, GUIRADO E, MAGLINETS Y, et al. Olive tree biovolume from UAV multi-resolution image segmentation with mask R-CNN[J]. Sensors, 2021, 21(5): 1617.
[127] ZHANG Keke, WU Qiufeng, CHEN Yiping. Detecting soybean leaf disease from synthetic image using multi-feature fusion faster R-CNN[J]. Computers and electronics in agriculture, 2021, 183: 106064.
[128] GRIFFITHS D, BOEHM J. Improving public data for building segmentation from Convolutional Neural Networks (CNNs) for fused airborne lidar and image data using active contours[J]. ISPRS journal of photogrammetry and remote sensing, 2019, 154: 70–83.
[129] TIEDE D, SCHWENDEMANN G, ALOBAIDI A, et al. Mask R-CNN-based building extraction from VHR satellite data in operational humanitarian action: an example related to Covid-19 response in Khartoum, Sudan[J]. Transactions in GIS, 2021, 25(3): 1213–1227.
[130] YU Sisi, ZHANG Zengxiang, LIU Fang. Monitoring population evolution in china using time-series DMSP/OLS nightlight imagery[J]. Remote sensing, 2018, 10(2): 194.
[131] ZHANG Qingling, SETO K C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data[J]. Remote sensing of environment, 2011, 115(9): 2320–2329.
[132] SHI Kaifang, SHEN Jingwei, WU Yizhen, et al. Identifying and quantifying urban polycentric development in China from DMSP-OLS data and urban land data sets[J]. IEEE geoscience and remote sensing letters, 2020: 1–5.
[133] SAGE C, AUSSEM A, ELGHAZEL H, et al. Recurrent neural network approach for table field extraction in business documents[C]//Proceedings of 2019 International Conference on Document Analysis and Recognition. Sydney, NSW, Australia, 2019: 1308–1313.
[134] KUMAR V, KAWARE P, SINGH P, et al. Extraction of information from bill receipts using optical character recognition[C]//Proceedings of 2020 International Conference on Smart Electronics and Communication. Trichy, India, 2020: 72–77.
[135] JANG S, CHUNG J, RAO V R. The importance of functional and emotional content in online consumer reviews for product sales: evidence from the mobile gaming market[J]. Journal of business research, 2021, 130: 583–593.
[136] AGRAWAL P, CHAUDHARY D, MADAAN V, et al. Automated bank cheque verification using image processing and deep learning methods[J]. Multimedia tools and applications, 2021, 80(4): 5319–5350.
[137] BANSAL B, SRIVASTAVA S. Hybrid attribute based sentiment classification of online reviews for consumer intelligence[J]. Applied intelligence, 2019, 49(1): 137–149.
[138] WANG Bin, LONG Wen, WEI Xianhua. Investor attention, market liquidity and stock return: a new perspective[J]. Asian economic and financial review, 2018, 8(3): 341–352.
[139] YANG Linyi, XU Yang, NG T L J, et al. Leveraging BERT to improve the FEARS index for stock forecasting[C]//Proceedings of the 1st Workshop on Financial Technology and Natural Language Processing. Macao, China, 2019:1–7.
[140] WANG Gaoshan, YU Guangjin, SHEN Xiaohong. The effect of online environmental news on green industry stocks: the mediating role of investor sentiment[J]. Physica A: statistical mechanics and its applications, 2021, 573: 125979.
[141] 张同辉, 苑莹, 曾文. 投资者关注能提高市场波动率预测精度吗?——基于中国股票市场高频数据的实证研究[J]. 中国管理科学, 2020, 28(11): 192–205.
ZHANG Tonghui, YUAN Ying, ZENG Wen. Can investor attention help to predict stock market volatility? an empirical research based on Chinese stock market high-frequency data[J]. Chinese journal of management science, 2020, 28(11): 192–205.
[142] 杨涛, 郭萌萌. 投资者关注度与股票市场—以PM2.5概念股为例[J]. 金融研究, 2019(5): 190–206.
YANG Tao, GUO Mengmeng. Investor attention and stock market: taking PM2.5 concept stocks as an example[J]. Financial research, 2019(5): 190–206.
[143] SUN Fan, BELATRECHE A, COLEMAN S, et al. Pre-processing online financial text for sentiment classification: a natural language processing approach[C]//Proceedings of 2014 IEEE Conference on Computational Intelligence for Financial Engineering & Economics. London, UK, 2014: 122–129.
[144] MISHEV K, GJORGJEVIKJ A, VODENSKA I, et al. Evaluation of sentiment analysis in finance: from lexicons to transformers[J]. IEEE access, 2020, 8: 131662–131682.
[145] OLANIYAN R, STAMATE D, PU I. A two-step optimised BERT-based NLP algorithm for extracting sentiment from financial news[C]//Proceedings of the 17th IFIP International Conference on Artificial Intelligence Applications and Innovations. Hersonissos, Crete, Greece, 2021: 745–756.
[146] SOUSA M G, SAKIYAMA K, DE SOUZA RODRIGUES L, et al. BERT for stock market sentiment analysis[C]//Proceedings of the 31st International Conference on Tools with Artificial Intelligence. Portland, USA, 2019.
[147] LI Menggang, LI Wenrui, WANG Fang, et al. Applying BERT to analyze investor sentiment in stock market[J]. Neural computing and applications, 2021, 33(10): 4663–4676.
[148] LI Mingzheng, CHENG Lei, ZHAO Jing, et al. Sentiment analysis of Chinese stock reviews based on BERT model[J]. Applied intelligence, 2021, 51(7): 5016–5024.
[149] 李成刚,贾鸿业. 企业管理层的文本披露质量与上市公司的风险预警——基于公司年报文本信息的分析研究[C]//. 中国数量经济学会2019年年会. 兰州,中国,2019: 413–433.
LI Chengang, JIA Hongye. The quality of corporate management’s text disclosure and the risk warning of listed companies: an analysis based on the text information of the company’s annual report[C]// 2019 Annual Meeting of China Society of Quantitative Economics. Lanzhou, China,2019:413–433.
[150] 姚潇, 吴冬晓, 庞守林. 基于文本挖掘的管理层语调 对公司债券信用利差的影响 [J]. 经济理论与经济管理, 2020(3): 99–112.
YAO Xiao, WU Dongxiao, PANG Shoulin. The influence of management tone on corporate bond credit spread based on text mining[J]. Economic theory and business management, 2020(3): 99–112.
[151] 董伟. 挖掘和分析文本来识别公司财务欺诈: 针对财务报表和社交媒体的分析 [D]. 合肥: 中国科学技术大学, 2016.
DONG Wei. Mining and analyzing the text for corporate fraud detection: an investigation of financial statements and social media[D]. Hefei: University of Science and Technology of China, 2016.
[152] LI Xuerong, SHANG Wei, WANG Shouyang. Text-based crude oil price forecasting: a deep learning approach[J]. International journal of forecasting, 2019, 35 (4):1548–1560.
[153] ZHAO Lutao, ZENG Guanrong, WANG Wenjing, et al. Forecasting oil price using web-based sentiment analysis[J]. Energies, 2019, 12(22): 4291–4309.
[154] 杨兵, 杨杨. 企业家市场预期能否激发税收激励的企业研发投入效应——基于上市企业年报文本挖掘的实证分析[J]. 财贸经济, 2020, 41(6):37–52.
YANG Bing, YANG Yang. Whether entrepreneur market expectation can stimulate enterprise R & D investment effect of Tax incentive -an empirical analysis based on text mining of annual reports of listed enterprises [J]. Finance and trade economy, 2020, 41 (6): 37–52.
[155] 部慧, 姚磊, 李映森. 沪深300 ETF上市对股指期货价格发现功能动态变化的影响:考虑交易机制变化[J].计量经济学报,2021,1(3):655–669.
BU Hui, YAO Lei, LI Yingsen. The impact of listing of CSI 300 ETF on the dynamic change of stock index futures price discovery function: considering the change of trading mechanism [J]. Journal of econometrics, 2021,1 (3): 655–669.
[156] LIU Jue, LU Zhuocheng, DU Wei. Combining enterprise knowledge graph and news sentiment analysis for stock price prediction[C]//Proceedings of the 52nd Hawaii International Conference on System Sciences. Grand Wailea, Maui, Hawaii, USA, 2019, 1247–1255.
[157] ELNAGDY S A, QIU Meikang, GAI Keke. Understanding taxonomy of cyber risks for cybersecurity insurance of financial industry in cloud computing [C]//Proceedings of the 3rd International Conference on Cyber Security and Cloud Computing. Beijing, China, 2016: 295–300.
[158] RUDNIK C, EHRHART T, FERRET O, et al. Searching news articles using an event knowledge graph leveraged by wikidata[C]//Companion Proceedings of the 2019 World Wide Web Conference. San Francisco, USA, 2019: 1232–1239.
[159] CIAMPAGLIA G L, SHIRALKAR P, ROCHA L M, et al. Computational fact checking from knowledge networks[J]. PLoS one, 2015, 10(6): e0128193.
[160] VAN BELLE R, MITROVI? S, DE WEERDT J. Representation learning in graphs for credit card fraud detection[C]//Proceedings of the 4th Workshop on Mining Data for Financial Applications. Würzburg, Germany, 2019: 32–46.
[161] SHEN Yuming, GUO Caichan, LI Huan, et al. Financial feature embedding with knowledge representation learning for financial statement fraud detection[J]. Procedia computer science, 2021, 187: 420–425.
[162] YANG Shuo, ZHANG Zhiqiang, ZHOU Jun, et al. Financial risk analysis for SMEs with graph-based supply chain mining[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Yokohama, Japan, 2020:4661–4667.
[163] LIU Ziqi, CHEN Chaochao, YANG Xinxing, et al. Heterogeneous graph neural networks for malicious account detection[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino, Italy, 2018: 2077–2085.
[164] KUMAR G, JAIN S, SINGH U P. Stock market forecasting using computational intelligence: a survey[J]. Archives of computational methods in engineering, 2021, 28(3): 1069–1101.
[165] O BUSTOS O, POMARES-QUIMBAYA A. Stock market movement forecast: a Systematic review[J]. Expert systems with applications, 2020, 156: 113464.
[166] CAO Yuan, WU Desheng, LI Lei. Debt risk analysis of non-financial corporates using two-tier networks[J]. Industrial management & data systems, 2020, 120(7): 1287–1307.
[167] PATRA A, DAS S, MISHRA S N, et al. An adaptive local linear optimized radial basis functional neural network model for financial time series prediction[J]. Neural computing and applications, 2017, 28(1): 101–110.
[168] ZHANG Yuanyuan, CHOUDHRY T. Forecasting the daily time‐varying beta of european banks during the crisis period: comparison between GARCH models and the Kalman filter[J]. Journal of forecasting, 2017, 36(8): 956–973.
[169] SHEPPARD K, XU Wen. Factor high-frequency-based volatility (HEAVY) models[J]. Journal of financial econometrics, 2019, 17(1): 33–65.
[170] ALEXANDRIDIS A K, HASAN M S. Global financial crisis and multiscale systematic risk: evidence from selected European stock markets[J]. International journal of finance & economics, 2020, 25(4): 518–546.
[171] DING Qiaoying. Risk early warning management and intelligent real-time system of financial enterprises based on fuzzy theory[J]. Journal of intelligent & fuzzy systems, 2021 (6): 1–11.
[172] HILSCHER J, WILSON M. Credit ratings and credit risk: Is one measure enough[J]. Management science, 2016, 63(10): 3414–3437.
[173] DE SANTIS R A. Unobservable systematic risk, economic activity and stock market[J]. Journal of banking & finance, 2018, 97: 51–69.
[174] GARCIA-JORCANO L, SANCHIS-MARCO L. Systemic-systematic risk in financial system: a dynamic ranking based on expectiles[J]. International review of economics & finance, 2021, 75: 330–365.
[175] LI A W, BASTOS G S. Stock market forecasting using deep learning and technical analysis: a systematic review[J]. IEEE access, 2020, 8: 185232–185242.
[176] DE SILVA A M, DAVIS R I A, PASHA S A, et al. Forecasting financial time series with grammar‐guided feature generation[J]. Computational intelligence, 2017, 33(2): 241–261.
[177] BOROVKOVA S, TSIAMAS I. An ensemble of LSTM neural networks for high‐frequency stock market classification[J]. Journal of forecasting, 2019, 38(6): 600–619.
[178] LI Xiaodong, WU Pangjing, WANG Wenpeng. Incorporating stock prices and news sentiments for stock market prediction: a case of Hong Kong[J]. Information processing & management, 2020, 57(5): 102212.
[179] VARGAS M R, DE LIMA B S L P, EVSUKOFF A G. Deep learning for stock market prediction from financial news articles[C]//Proceedings of 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications. Annecy, France, 2017: 60–65.
[180] ZHANG Qian, SPURGEON S, XU Li, et al. Computational intelligence in data-driven modelling and its engineering applications[J]. Mathematical problems in engineering, 2018: 2576239.
[181] LEE C Y, SOO V W. Predict stock price with financial news based on recurrent convolutional neural networks[C]//Proceedings of 2017 Conference on Technologies and Applications of Artificial Intelligence. Taipei, China, 2017: 160–165.
[182] ONCHAROEN P, VATEEKUL P. Deep learning for stock market prediction using event embedding and technical indicators[C]//Proceedings of the 5th International Conference on Advanced Informatics: Concept Theory and Applications. Krabi, Thailand, 2018: 19–24.
[183] ONCHAROEN P, VATEEKUL P. Deep learning using risk-reward function for stock market prediction[C]//Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence. Shenzhen, China, 2018: 556–561.
[184] VARGAS M R, DOS ANJOS C E M, BICHARA G L G, et al. Deep leaming for stock market prediction using technical indicators and financial news articles[C]//Proceedings of 2018 International Joint Conference on Neural Networks. Rio de Janeiro, Brazil, 2018: 1–8.

备注/Memo

收稿日期:2021-07-15。
基金项目:国家科技部重大项目(2020AAA0104204);广东省重大专项项目(2020B01038000)
作者简介:肖京, 教授级高级工程师,国家特聘专家,主要研究方向为人工智能、机器人及金融科技。获省部级科技进步奖2项、国家专利优秀奖2项,2019年吴文俊人工智能科学技术奖“杰出贡献奖”。获授权发明专利130余项,发表学术论文232篇。王磊, 高级统计师,主要研究方向为金融大数据建模理论及应用研究。获2020年吴文俊人工智能科技进步奖一等奖。主持及参与科技部重大项目、工信部示范项目、广东省重大专项等5项。发表学术论文20余篇。杨余久, 副教授,主要研究方向为大数据环境下信息处理与机器学习应用的研究。获2020年吴文俊人工智能科学技术奖科技进步一等奖(排名第二),2015年广东省科技进步奖一等奖。主持国家、省部级和深圳市科研项目30余项。发表学术论文80余篇。
通讯作者:王磊.E-mail:wangleis25@pingan.com.cn

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134