[1]姜峰,尹逊锋,衣淳植,等.利用肌电信号求解关节力矩的研究及应用综述[J].智能系统学报,2020,15(2):193-203.[doi:10.11992/tis.202001013]
 JIANG Feng,YIN Xunfeng,YI Chunzhi,et al.A review of the research and application of calculating joint torque by electromyography signals[J].CAAI Transactions on Intelligent Systems,2020,15(2):193-203.[doi:10.11992/tis.202001013]
点击复制

利用肌电信号求解关节力矩的研究及应用综述(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年2期
页码:
193-203
栏目:
综述
出版日期:
2020-07-05

文章信息/Info

Title:
A review of the research and application of calculating joint torque by electromyography signals
作者:
姜峰1 尹逊锋2 衣淳植2 杨炽夫2
1. 哈尔滨工业大学 计算机科学与技术学院, 黑龙江 哈尔滨 150001;
2. 哈尔滨工业大学 机电工程学院, 黑龙江 哈尔滨 150001
Author(s):
JIANG Feng1 YIN Xunfeng2 YI Chunzhi2 YANG Chifu2
1. College of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China;
2. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
关键词:
表面肌电信号神经激活信号处理肌肉激活肌肉骨骼模型关节力矩关节动力学参数辨识
Keywords:
surface electromyographyneural activationsignal processingmuscle activationmusculoskeletal modeljoint momentjoint dynamicsparameter identification
分类号:
TP391.4
DOI:
10.11992/tis.202001013
摘要:
表面肌电信号(surface electromyography, sEMG)是人体的易于检测的神经信号,其富含大量人体运动信息。利用肌电信号作为输入信号,结合相关生物学模型分析肌电信号同肌肉力和对应关节力矩之间的关系,对于深入理解分析人体动力学具有重要意义。本文详细归纳总结了利用肌电信号求解人体关节力矩方法的研究成果,同时介绍神经肌肉骨骼模型的计算及优化过程,给出部分模型生理参数为之后的研究提供参照,并给出现阶段该方法在人体关节力矩求解中的应用。通过分析该求解过程中所面临的一些问题,总结出该方法的发展展望,为之后的研究提供参考。
Abstract:
Surface electromyography is a neuronal signal of the human body that is easily detected. It extensively provides information about human motion. For a deeper understanding of human body dynamics, the use of electromyographic signals and biological models to examine the relationship between myoelectric signals and muscle forces or corresponding joint torques, is of great importance. This paper summarizes:the research results of solving human joint torque using electromyography signals; introduces the process of measuring and optimizing the neuromusculoskeletal model;gives some model physiological parameters to provide reference for future research; and provides application of the method in solving human joint torque in the current stage. Some of the problems encountered in the solution process are then evaluated, and the development prospect of the method is summarized, providing a reference for future research.

参考文献/References:

[1] MATHEW A J, NUNDY M, CHANDRASHEKARAN N, et al. Wrestle while you learn: EMG as a teaching tool for undergraduate skeletal muscle physiology teaching[J]. Advances in physiology education, 2019, 43(4): 467-471.
[2] 孙全义, 陈雪丽, 李春梅, 等. 颏下肌群表面肌电信号评定脑卒中患者吞咽障碍的价值[J]. 广西医科大学学报, 2019, 36(7): 1104-1107
SUN Quanyi, CHEN Xueli, LI Cunmei, et al. The value of submental muscle surface electromyography signal for evaluating dysphagia in stroke patients[J]. Journal of Guangxi medical university, 2019, 36(7): 1104-1107
[3] 韩书娜, 刘昆磊, 吕杰. 康复锻炼用肌电控制机械手开发[J]. 机床与液压, 2019, 47(11): 48-52
HAN Shuna, LIU Kunlei, LV Jie. Development of myoelectric control manipulator for rehabilitative exercise[J]. Machine tool & hydraulics, 2019, 47(11): 48-52
[4] MANERO R B R, SHAFTI A, MICHAEL B, et al. Wearable embroidered muscle activity sensing device for the human upper leg[C]//Proceedings of 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Orlando, USA, 2016: 6062-6065.
[5] JACKSON R W, COLLINS S H. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons[J]. Journal of applied physiology, 2015, 119(5): 541-557.
[6] MULAS M, FOLGHERAITER M, GINI G. An EMG-controlled exoskeleton for hand rehabilitation[C]//Proceedings of 9th International Conference on Rehabilitation Robotics. Chicago, USA, 2005.
[7] AMBROSINI E, FERRANTE S, ZAJC J, et al. The combined action of a passive exoskeleton and an EMG-controlled neuroprosthesis for upper limb stroke rehabilitation: first results of the RETRAINER project[C]//Proceedings of 2017 International Conference on Rehabilitation Robotics. London, UK, 2017.
[8] LLOYD D G, BUCHANAN T S. A model of load sharing between muscles and soft tissues at the human knee during static tasks[J]. Journal of biomechanical engineering, 1996, 118(3): 367-376.
[9] MCGILL S M. A myoelectrically based dynamic three-dimensional model to predict loads on lumbar spine tissues during lateral bending[J]. Journal of biomechanics, 1992, 25(4): 395-414.
[10] 郭伟, 杨丛为, 邓静, 等. 外骨骼机器人系统中人体下肢关节力矩动态解算[J]. 机械与电子, 2015(10): 71-75
GUO Wei, YANG Cong Wei, DENG Jing, et al. Dynamic solution of the lower extremity joint torques in man-machine system of lower extremity exoskeleton[J]. Machinery & electronics, 2015(10): 71-75
[11] SONG Jialei, ZHONG Yong, LUO Haoxiang, et al. Hydrodynamics of larval fish quick turning: a computational study[J]. Proceedings of the institution of mechanical engineers, part C: journal of mechanical engineering science, 2018, 232(14): 2515-2523.
[12] ZAJAC F E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control[J]. Critical reviews in biomedical engineering, 1989, 17(4): 359-411.
[13] HUXLEY A F. Muscle structure and theories of contraction[J]. Progress in biophysics and biophysical chemistry, 1957, 7: 255-318.
[14] HUXLEY A F, SIMMONS R M. Proposed mechanism of force generation in striated muscle[J]. Nature, 1971, 233(5321): 533-538.
[15] ZAHALAK G I. A comparison of the mechanical behavior of the cat soleus muscle with a distribution-moment model[J]. Journal of biomechanical engineering, 1986, 108(2): 131-140.
[16] ZAHALAK G I. The two-state cross-bridge model of muscle is an asymptotic limit of multi-state models[J]. Journal of theoretical biology, 2000, 204(1): 67-82.
[17] HILL A V. The heat of shortening and the dynamic constants of muscle[J]. Proceedings of the royal society B: biological sciences, 1938, 126(843): 136-195.
[18] HAN Jianda, DING Qichuan, XIONG Anbin, et al. A state-space EMG model for the estimation of continuous joint movements[J]. IEEE transactions on industrial electronics, 2015, 62(7): 4267-4275.
[19] BUCHANAN T S, LLOYD D G, MANAL K, et al. Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command[J]. Journal of applied biomechanics, 2004, 20(4): 367-395.
[20] MURRAY W M, BUCHANAN T S, DELP S L. The isometric functional capacity of muscles that cross the elbow[J]. Journal of biomechanics, 2000, 33(8): 943-952.
[21] CROUCH D L, HUANG He. Musculoskeletal model predicts multi-joint wrist and hand movement from limited EMG control signals[C]//Proceedings of 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Milan, Italy, 2015.
[22] LLOYD D G, BESIER T F. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo[J]. Journal of biomechanics, 2003, 36(6): 765-776.
[23] MANAL K, GONZALEZ R V, LLOYD D G, et al. A real-time EMG-driven virtual arm[J]. Computers in biology and medicine, 2002, 32(1): 25-36.
[24] DESPLENTER T, TREJOS A L. Evaluating muscle activation models for elbow motion estimation[J]. Sensors, 2018, 18(4): 1004.
[25] CAVALLARO E E, ROSEN J, PERRY J C, et al. Real-time myoprocessors for a neural controlled powered exoskeleton arm[J]. IEEE transactions on biomedical engineering, 2006, 53(11): 2387-2396.
[26] MANAL K, BUCHANAN T S. A one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyograms[J]. Journal of biomechanics, 2003, 36(8): 1197-1202.
[27] CHADWICK E K, BLANA D, KIRSCH R F, et al. Real-time simulation of three-dimensional shoulder girdle and arm dynamics[J]. IEEE transactions on biomedical engineering, 2014, 61(7): 1947-1956.
[28] RENGIFO C, AOUSTIN Y, PLESTAN F, et al. Distribution of forces between synergistics and antagonistics muscles using an optimization criterion depending on muscle contraction behavior[J]. Journal of biomechanical engineering, 2010, 132(4): 041009.
[29] CHADWICK E K, BLANA D, VAN DEN BOGERT A J, et al. A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements[J]. IEEE transactions on biomedical engineering, 2009, 56(4): 941-948.
[30] THELEN D G. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults[J]. Journal of biomechanical engineering, 2003, 125(1): 70-77.
[31] SCHUTTE L M, RODGERS M M, ZAJAC F E, et al. Improving the efficacy of electrical stimulation-induced leg cycle ergometry: an analysis based on a dynamic musculoskeletal model[J]. IEEE transactions on rehabilitation engineering, 1993, 1(2): 109-125.
[32] HERZOG W. History dependence of force production in skeletal muscle: a proposal for mechanisms[J]. Journal of electromyography and kinesiology, 1998, 8(2): 111-117.
[33] GORDON A M, HUXLEY A F, JULIAN F J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres[J]. The journal of physiology, 1966, 184(1): 170-192.
[34] DING Qichan, XIONG Anbin, ZHAO Xingang, et al. A novel EMG-driven state space model for the estimation of continuous joint movements[C]//Proceedings of 2011 IEEE International Conference on Systems, Man, and Cybernetics. Anchorage, USA, 2011.
[35] CROUCH D L, HUANG H. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task[J]. Journal of neural engineering, 2017, 14(3): 036008.
[36] AO Di, SONG Rong, GAO Jinwu. Movement performance of human-robot cooperation control based on EMG-driven hill-type and proportional models for an ankle power-assist exoskeleton robot[J]. IEEE transactions on neural systems and rehabilitation engineering, 2017, 25(8): 1125-1134.
[37] FORCINITO M, EPSTEIN M, HERZOG W. Can a rheological muscle model predict force depression/enhancement?[J]. Journal of biomechanics, 1998, 31(12): 1093-1099.
[38] KAWAKAMI Y, ICHINOSE Y, FUKUNAGA T. Architectural and functional features of human, triceps surae muscles during contraction[J]. Journal of applied physiology, 1998, 85(2): 398-404.
[39] WOITTIEZ R D, HUIJING P A, BOOM H B K, et al. A three-dimensional muscle model: a quantified relation between form and function of skeletal muscles[J]. Journal of morphology, 1984, 182(1): 95-113.
[40] SCOTT S H, WINTER D A. A comparison of three muscle pennation assumptions and their effect on isometric and isotonic force[J]. Journal of biomechanics, 1991, 24(2): 163-167.
[41] MENEGALDO L L, DE TOLEDO FLEURY A, WEBER H I. Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model[J]. Journal of biomechanics, 2004, 37(9): 1447-1453.
[42] DELP S L, LOAN J P. A graphics-based software system to develop and analyze models of musculoskeletal structures[J]. Computers in biology and medicine, 1995, 25(1): 21-34.
[43] DELP S L, LOAN J P, HOY M G, et al. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures[J]. IEEE transactions on biomedical engineering, 1990, 37(8): 757-767.
[44] DE GROOTE F, VAN CAMPEN A, JONKERS I, et al. Sensitivity of dynamic simulations of gait and dynamometer experiments to hill muscle model parameters of knee flexors and extensors[J]. Journal of biomechanics, 2010, 43(10): 1876-1883.
[45] REDL C, GFOEHLER M, PANDY M G. Sensitivity of muscle force estimates to variations in muscle-tendon properties[J]. Human movement science, 2007, 26(2): 306-319.
[46] AI Qingsong, DING Bo, LIU Quan, et al. A subject-specific EMG-driven musculoskeletal model for applications in lower-limb rehabilitation robotics[J]. International journal of humanoid robotics, 2016, 13(3): 1650005.
[47] MENEGALDO L L, OLIVEIRA L F. The influence of modeling hypothesis and experimental methodologies in the accuracy of muscle force estimation using EMG-driven models[J]. Multibody system dynamics, 2012, 28(1/2): 21-36.
[48] QASHQAI A, EHSANI H, ROSTAMI M. A hill-based EMG-driven model to estimate elbow torque during flexion and extention[C]//Proceedings of 2015 22nd Iranian Conference on Biomedical Engineering. Tehran, Iran, 2015.
[49] LI Kexiang, ZHANG Jianhua, LIU Xuan, et al. Estimation of continuous elbow joint movement based on human physiological structure[J]. Biomedical engineering online, 2019, 18(1): 31.
[50] PAU J W L, SAINI H, XIE S S Q, et al. An EMG-driven neuromuscular interface for human elbow joint[C]//Proceedings of 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Tokyo, Japan, 2010.
[51] HOLZBAUR K R S, MURRAY W M, DELP S L. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control[J]. Annals of biomedical engineering, 2005, 33(6): 829-840.
[52] SON J, HWANG S J, LEE J S, et al. Optimization of muscle parameters to predict ankle joint moments[C]//Proceedings of 6th World Congress of Biomechanics. Singapore, 2010.
[53] BUONGIORNO D, BARSOTTI M, BARONE F, et al. A linear approach to optimize an EMG-Driven Neuromusculoskeletal model for movement intention detection in myo-control: a case study on shoulder and elbow joints[J]. Frontiers in neurorobotics, 2018, 12: 74.
[54] MICHALEWICZ Z, NAZHIYATH G. Genocop III: a co-evolutionary algorithm for numerical optimization problems with nonlinear constraints[C]//Proceedings of 1995 IEEE International Conference on Evolutionary Computation. Perth, WA, Australia, 1995.
[55] SON J, KIM S, AHN S, et al. Determination of the dynamic knee joint range of motion during leg extension exercise using an EMG-driven model[J]. International journal of precision engineering and manufacturing, 2012, 13(1): 117-123.
[56] AN K N, HUI F C, MORREY B F, et al. Muscles across the elbow joint: a biomechanical analysis[J]. Journal of biomechanics, 1981, 14(10): 659-661, 663-669.
[57] JACOBSON M D, RAAB R, FAZELI B M, et al. Architectural design of the human intrinsic hand muscles[J]. The journal of hand surgery, 1992, 17(5): 804-809.
[58] LANGENDERFER J, JERABEK S A, THANGAMANI V B, et al. Musculoskeletal parameters of muscles crossing the shoulder and elbow and the effect of sarcomere length sample size on estimation of optimal muscle length[J]. Clinical biomechanics, 2004, 19(7): 664-670.
[59] LIEBER R L, FAZELI B M, BOTTE M J. Architecture of selected wrist flexor and extensor muscles[J]. The journal of hand surgery, 1990, 15(2): 244-250.
[60] LIEBER R L, JACOBSON M D, FAZELI B M, et al. Architecture of selected muscles of the arm and forearm: anatomy and implications for tendon transfer[J]. The journal of hand surgery, 1992, 17(5): 787-798.
[61] JIANG Ning, ENGLEHART K B, PARKER P A. Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal[J]. IEEE transactions on biomedical engineering, 2009, 56(4): 1070-1080.
[62] DOWLING D J. The use of electromyography for the noninvasive prediction of muscle forces[J]. Sports medicine, 1997, 24(2): 82-96.
[63] RASCHKE U, CHAFFIN D B. Support for a linear length-tension relation of the torso extensor muscles: an investigation of the length and velocity EMG-force relationships[J]. Journal of biomechanics, 1996, 29(12): 1597-1604.
[64] ROSEN J, BRAND M, FUCHS M B, et al. A myosignal-based powered exoskeleton system[J]. IEEE transactions on systems, man, and cybernetics-Part A: systems and humans, 2001, 31(3): 210-222.
[65] MANAL K, GRAVARE-SILBERNAGEL K, BUCHANAN T S. A real-time EMG-driven musculoskeletal model of the ankle[J]. Multibody system dynamics, 2012, 28(1/2): 169-180.
[66] ROSEN J, FUCHS M B, ARCAN M. Performances of hill-type and neural network muscle models—toward a myosignal-based exoskeleton[J]. Computers and biomedical research, 1999, 32(5): 415-439.
[67] MENEGALDO L L, OLIVEIRA L F. An EMG-driven model to evaluate quadriceps strengthening after an isokinetic training[J]. Procedia IUTAM, 2011, 2: 131-141.
[68] MENEGALDO L L. Real-time muscle state estimation from EMG signals during isometric contractions using Kalman filters[J]. Biological cybernetics, 2017, 111(5/6): 335-346.
[69] MA Ye, XIE Shengquan, ZHANG Yanxin. A patient-specific EMG-driven neuromuscular model for the potential use of human-inspired gait rehabilitation robots[J]. Computers in biology and medicine, 2016, 70: 88-98.
[70] WANG He, ZHANG Xiaodong, CHEN Jiangcheng, et al. Realization of human-computer interaction of lower limbs rehabilitation robot based on sEMG[C]//Proceedings of the 4th Annual IEEE International Conference on Cyber Technology in Automation. Hong Kong, China, 2014: 491-495.
[71] SHAO Qi, BASSETT D N, MANAL K, et al. An EMG-driven model to estimate muscle forces and joint moments in stroke patients[J]. Computers in biology and medicine, 2009, 39(12): 1083-1088.
[72] PIZZOLATO C, LLOYD D G, SARTORI M, et al. CEINMS: a toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks[J]. Journal of biomechanics, 2015, 48(14): 3929-3936.
[73] ZHUANG Yu, YAO Shaowei, MA Chenming, et al. Admittance control based on EMG-driven musculoskeletal model improves the human-robot synchronization[J]. IEEE transactions on industrial informatics, 2018, 15(2): 1211-1218.
[74] LLOYD D G, BUCHANAN T S. Strategies of muscular support of varus and valgus isometric loads at the human knee[J]. Journal of biomechanics, 2001, 34(10): 1257-1267.
[75] OLNEY S J, WINTER D A. Predictions of knee and ankle moments of force in walking from EMG and kinematic data[J]. Journal of biomechanics, 1985, 18(1): 9-20.
[76] RAJAGOPAL A, DEMBIA C L, DEMERS M S, et al. Full-body musculoskeletal model for muscle-driven simulation of human gait[J]. IEEE transactions on biomedical engineering, 2016, 63(10): 2068-2079.
[77] HOANG H X, DIAMOND L E, LLOYD D G, et al. A calibrated EMG-informed neuromusculoskeletal model can appropriately account for muscle co-contraction in the estimation of hip joint contact forces in people with hip osteoarthritis[J]. Journal of biomechanics, 2019, 83: 134-142.
[78] BUCHANAN T S, MONIZ M J, DEWALD J P A, et al. Estimation of muscle forces about the wrist joint during isometric tasks using an EMG coefficient method[J]. Journal of biomechanics, 1993, 26(4/5): 547-560.
[79] VAN DEN BOGERT A J, BLANA D, HEINRICH D. Implicit methods for efficient musculoskeletal simulation and optimal control[J]. Procedia IUTAM, 2011, 2: 297-316.
[80] BUENO D R, MONTANO L. Neuromusculoskeletal model self-calibration for on-line sequential Bayesian moment estimation[J]. Journal of neural engineering, 2017, 14(2): 026011.

备注/Memo

备注/Memo:
收稿日期:2020-01-08。
基金项目:国家重点研发计划项目(2018YFC0806800, 2018YFC0832105)
作者简介:姜峰,教授,IEEE哈尔滨信号处理分会主席、美国Princeton大学电子工程系访问学者、核九院特聘专家、黑龙江VR联盟首席专家,主要研究方向为计算机视觉、模式识别、视频图像处理、下肢外骨骼机器人。近5年主持国家自然科学基金面上项目、国家自然科学基金青年项目、军委科技委项目、国际合作项目等10余项;参与国家重点研发计划、国家自然科学基金重点项目、国家973计划、863计划、国际合作项目20项。获军队科技进步二等奖(排名第二)、黑龙江省高校科技奖一等奖。出版中文、英文专著和教材3部。发表学术论文100余篇;尹逊锋,硕士研究生,主要研究方向为下肢外骨骼机器人、人体运动学、生物电信号分析;衣淳植,博士研究生,主要研究方向为下肢外骨骼机器人、人机协作、人体运动学、惯性导航、仿生学
通讯作者:尹逊锋.E-mail:mr_yinxf@hit.edu.cn
更新日期/Last Update: 1900-01-01