[1]陈晓琪,谢振平,刘渊.增量采样聚类驱动的新闻事件发现[J].智能系统学报,2020,15(6):1175-1184.[doi:10.11992/tis.201912037]
 CHEN Xiaoqi,XIE Zhenping,LIU Yuan.News event detection driven by incremental sampling clustering[J].CAAI Transactions on Intelligent Systems,2020,15(6):1175-1184.[doi:10.11992/tis.201912037]
点击复制

增量采样聚类驱动的新闻事件发现

参考文献/References:
[1] QU Xiaoting, YANG Juan, WU Bin, et al. A news event detection algorithm based on key elements recognition[C]//Proceedings of 2016 IEEE First International Conference on Data Science in Cyberspace. Changsha, China, 2016:394-399.
[2] YAN Danfeng, HUA Enzheng, HU Bo. An improved single-pass algorithm for Chinese microblog topic detection and tracking[C]//Proceedings of 2016 IEEE International Congress on Big Data. San Francisco, USA, 2016:251-258.
[3] 路荣, 项亮, 刘明荣, 等. 基于隐主题分析和文本聚类的微博客中新闻话题的发现[J]. 模式识别与人工智能, 2012, 25(3): 382-387
LU Rong, XIANG Liang, LIU Mingrong, et al. Discovering news topics from microblogs based on hidden topics analysis and text clustering[J]. Pattern recognition and artificial intelligence, 2012, 25(3): 382-387
[4] GENG Xiao, ZHANG Yanmei, JIAO Yuhang, et al. A novel hybrid clustering algorithm for topic detection on Chinese microblogging[J]. IEEE transactions on computational social systems, 2019, 6(2): 289-300.
[5] GUAN Renchu, SHI Xiaohu, MARCHESE M, et al. Text clustering with seeds affinity propagation[J]. IEEE transactions on knowledge and data engineering, 2011, 23(4): 627-637.
[6] SHRIVASTAVA S K, RANA J L, JAIN R C. Text document clustering based on phrase similarity using affinity propagation[J]. International journal of computer applications, 2013, 61(18): 38-44.
[7] ALLAN J, PAPKA R, LAVRENKO V. On-line new event detection and tracking[C]//Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Canberra, Australia, 1998: 37-45.
[8] 赵旭剑, 杨春明, 李波, 等. 一种基于特征演变的新闻话题演化挖掘方法[J]. 计算机学报, 2014, 37(4): 819-832
ZHAO Xujian, YANG Chunming, LI Bo, et al. A topic evolution mining algorithm of news text based on feature evolving[J]. Chinese journal of computers, 2014, 37(4): 819-832
[9] YIN Jianhua, WANG Jianyong. A dirichlet multinomial mixture model-based approach for short text clustering[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2014: 233-242.
[10] 周楠, 杜攀, 靳小龙, 等. 面向舆情事件的子话题标签生成模型ET-TAG[J]. 计算机学报, 2018, 41(7): 1490-1503
ZHOU Nan, DU Pan, JIN Xiaolong, et al. ET-TAG: a tag generation model for the sub-topics of public opinion events[J]. Chinese journal of computers, 2018, 41(7): 1490-1503
[11] XU Guixian, MENG Yueting, CHEN Zhan, et al. Research on topic detection and tracking for online news texts[J]. IEEE access, 2019, 7: 58407-58418.
[12] 黄九鸣, 吴泉源, 张圣栋, 等. 基于AC-Trie的在线社交网络文本流热点短语挖掘[J]. 电子学报, 2016, 44(10): 2466-2470
HUANG Jiuming, WU Quanyuan, ZHANG Shengdong, et al. Mining hot phrases on sociai network text streams based on AC-Trie[J]. Acta electronica sinica, 2016, 44(10): 2466-2470
[13] CHEN Ling, TU Ding, LV Mingqi, et al. A knowledge-based semisupervised hierarchical online topic detection framework[J]. IEEE transactions on cybernetics, 2019, 49(9): 3307-3321.
[14] SAYYADI H, RASCHID L. A graph analytical approach for topic detection[J]. ACM transactions on internet technology, 2013, 13(2): 4.
[15] CHEN Peixian, ZHANG N L, LIU Tengfei, et al. Latent tree models for hierarchical topic detection[J]. Artificial intelligence, 2017, 250: 105-124.
[16] 柏文言, 张闯, 徐克付, 等. 一种融合用户关系的自适应微博话题跟踪方法[J]. 电子学报, 2017, 45(6): 1375-1381
BAI Wenyan, ZHANG Chuang, XU Kefu, et al. A self-adaptive microblog topic tracking method by user relationship[J]. Acta electronica sinica, 2017, 45(6): 1375-1381
[17] 张斌, 胡琳梅, 侯磊, 等. 基于词向量的中文事件发现及表示[J]. 模式识别与人工智能, 2018, 31(3): 275-282
ZHANG Bin, HU Linmei, HOU Lei, et al. Word embedding based Chinese news event detection and representation[J]. Pattern recognition and artificial intelligence, 2018, 31(3): 275-282
[18] FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976.
[19] 谢振平, 金晨, 刘渊. 基于建构主义学习理论的个性化知识推荐模型[J]. 计算机研究与发展, 2018, 55(1): 125-138
XIE Zhenping, JIN Chen, LIU Yuan. Personalized knowledge recommendation model based on constructivist learning theory[J]. Journal of computer research and development, 2018, 55(1): 125-138
[20] ARTHUR D, VASSILVITSKⅡ S. K-Means++: the advantages of careful seeding[C]//Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. New Orleans, USA, 2007: 1027-1035.
[21] SUN Leilei, GUO Chonghui. Incremental affinity propagation clustering based on message passing[J]. IEEE transactions on knowledge and data engineering, 2014, 26(11): 2731-2744.
[22] SALTON G, WONG A, YANG C S. A vector space model for automatic indexing[J]. Communications of the ACM, 1975, 18(11): 613-620.
[23] DAI Xiangying, HE Yancheng, SUN Yunlian. A two-layer text clustering approach for retrospective news event detection[C]//Proceedings of 2010 International Conference on Artificial Intelligence and Computational Intelligence. Sanya, China, 2010: 364-368.
[24] AMELIO A, PIZZUTI C. Is normalized mutual information a fair measure for comparing community detection methods?[C]//Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015. Paris, France, 2015: 1584-1585.
[25] LUO Ruixuan, XU Jingjing, ZHANG Yi, et al. PKUSEG: a toolkit for multi-domain Chinese word segmentation[EB/OL]. [2019-06-22] http://axvio.org/abs/1906.11455.
[26] 人民日报社评选. 2018国内十大新闻[N]. 人民日报, 2018-12-29(02).
[27] 人民日报. 9张图速读12个月, 带你回顾即将过去的2018[DB/OL]. 人民日报微博, [2018-12-26]. https://baijiahao.baidu.com/s?id=1620877305413536727.

备注/Memo

收稿日期:2019-12-31。
基金项目:国家自然科学基金项目(61872166);江苏省“六大人才高峰”项目(2019XYDXX-161)
作者简介:陈晓琪,硕士研究生,主要研究方向为大数据知识发现;谢振平,教授,博士生导师,主要研究方向为知识表示与认知学习。主持或参与完成国家、省部级科研项目6项,承担产学研合作项目15项。获发明专利5项,发表学术论文30余篇;刘渊,教授,博士生导师,主要研究方向为网络安全、数字媒体。作为项目负责人完成了省部级科研项目3项。发表学术论文40余篇,出版专著1部
通讯作者:谢振平.E-mail:xiezp@jiangnan.edu.cn

更新日期/Last Update: 2020-12-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134