[1]杨红梅,赵克勤.偏联系数的计算与应用研究[J].智能系统学报,2019,14(05):865-876.[doi:10.11992/tis.201810022]
 YANG Hongmei,ZHAO Keqin.The calculation and application of partial connection numbers[J].CAAI Transactions on Intelligent Systems,2019,14(05):865-876.[doi:10.11992/tis.201810022]
点击复制

偏联系数的计算与应用研究(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年05期
页码:
865-876
栏目:
出版日期:
2019-09-05

文章信息/Info

Title:
The calculation and application of partial connection numbers
作者:
杨红梅1 赵克勤2
1. 山西广播电视大学 成人教育学院, 山西 太原 030027;
2. 诸暨市联系数学研究所, 浙江 诸暨 311800
Author(s):
YANG Hongmei1 ZHAO Keqin2
1. Adult Education College, Shanxi Radio and TV University, Taiyuan 030027, China;
2. Institut of Zhuji Connection Mathematics, Zhuji 311800, China
关键词:
集对分析联系数多元联系数偏联系数全偏联系数系统微观运动多层分析法信息能
Keywords:
set pair analysisconnection numbermulti-connection numberpartial connection numberfull partial connection numbermicro motion of systemmulti-layer analysis methodinformation energy
分类号:
TP311
DOI:
10.11992/tis.201810022
摘要:
偏联系数是联系数的一种伴随函数,其计算过程反映出联系数的联系分量在各个微观层次上的“矛盾运动”,计算结果指示出这种“矛盾运动”的阶段性结果,是“系统宏观状态与微观趋势多层分析法”的主要数学工具。本文系统阐述常用的二元至五元联系数的偏联系数算法和若干新思路,并从智能技术创新和信息能开发利用等角度指出偏联系数算法是一种新的智能算法。
Abstract:
Partial connection numbers (PCNs) are a kind of adjoint function of connection numbers. Their computational process reflects a paradoxical movement on the micro level, and the result indicates that the phase result of such paradoxical movement is the main mathematical tool of the multi-layer approximation method of macro-state and micro-trend. This paper also systematically expounds the commonly used PCN algorithms from 2- to 5-element connection numbers and some ideas and establishes that the PCN algorithm is an intelligent algorithm from the aspects of intelligent technology innovation and information energy development and utilization.

参考文献/References:

[1] 赵克勤. 集对分析对不确定性的描述和处理[J]. 信息与控制, 1995, 24(3):162-166 ZHAO Keqin. Disposal and description of uncertainties based on the set pair analysis[J]. Information and control, 1995, 24(3):162-166
[2] 赵克勤. 集对分析及其初步应用[M]. 杭州:浙江科学技术出版社, 2000.
[3] 王文圣, 李跃清, 金菊良, 等. 水文水资源集对分析[M]. 北京:科学出版社, 2010.
[4] 杨红梅. 基于联系数的梯形直觉与非直觉模糊决策算法与应用[J]. 中北大学学报(自然科学版), 2012, 33(6):688-694 YANG Hongmei. Operation and application of trapezoidal intuitionistic fuzzy number and unintuitionistic fuzzy decision method based on correlate[J]. Journal of North University of China (Natural Science Edition), 2012, 33(6):688-694
[5] 杨红梅. 集对分析在我国经济增长模糊规则提取中的应用[J]. 运筹与管理, 2013, 22(3):194-200 YANG Hongmei. The application of set pair analysis in fuzzy rule extraction of domestic economy growth[J]. Operations research and management science, 2013, 22(3):194-200
[6] 杨红梅. 基于二元联系数的三角模糊数直觉模糊集多属性决策[J]. 山西师范大学学报(自然科学版), 2015, 29(2):13-19 YANG Hongmei. Multiple attribute decision making of triangular fuzzy number intuitionistic fuzzy set based on two-element connection number[J]. Journal of Shanxi Normal University (Natural Science Edition), 2015, 29(2):13-19
[7] 赵克勤, 赵森烽. 奇妙的联系数[M]. 北京:知识产权出版社, 2014.
[8] 刘秀梅, 赵克勤. 区间数决策集对分析[M]. 北京:科学出版社, 2014.
[9] 蒋云良, 赵克勤, 刘以安, 等. 信息处理集对分析[M]. 北京:清华大学出版社, 2015.
[10] 王万军, 晏燕. 不确定信息处理的集对分析研究与应用[M]. 兰州:兰州大学出版社, 2015.
[11] 汪明武, 金菊良, 周玉良. 集对分析耦合方法与应用[M]. 北京:科学出版社, 2014.
[12] 潘争伟, 吴成国, 金菊良. 水资源系统评价与预测的集对分析方法[M]. 北京:科学出版社, 2016.
[13] 刘保相. 粗糙集对分析理论与决策模型[M]. 北京:科学出版社, 2010.
[14] 汪明武, 金菊良. 联系数理论与应用[M]. 北京:科学出版社, 2017.
[15] 蒋云良, 赵克勤. 人工智能集对分析[M]. 北京:科学出版社, 2017.
[16] 赵克勤, 米红. 非传统安全与集对分析[M]. 北京:知识产权出版社, 2010.
[17] 蒋云良, 徐从富. 集对分析理论及其应用研究进展[J]. 计算机科学, 2006, 33(1):205-209 JIANG Yunliang, XU Congfu. Advances in set pair analysis theory and its applications[J]. Computer science, 2006, 33(1):205-209
[18] 赵克勤. 集对分析的不确定性系统理论在AI中的应用[J]. 智能系统学报, 2006, 1(2):16-25 ZHAO Keqin. The application of uncertainty systems theory of set pair analysis (SPU) in the artificial intelligence[J]. CAAI transactions on intelligent systems, 2006, 1(2):16-25
[19] 赵克勤. 二元联系数A+Bi的理论基础与基本算法及在人工智能中的应用[J]. 智能系统学报, 2008, 3(6):476-486 ZHAO Keqin. The theoretical basis and basic algorithm of binary connection A+Bi and its application in AI[J]. CAAI transactions on intelligent systems, 2008, 3(6):476-486
[20] 赵克勤. 成对原理及其在集对分析(SPA)中的作用与意义[J]. 大自然探索, 1998, 17(4):90 ZHAO Keqin. The function and meaning of Pair principle in the Set Pair Analysis[J]. Discovery of nature, 1998, 17(4):90
[21] 赵克勤. SPA的同异反系统理论在人工智能研究中的应用[J]. 智能系统学报, 2007, 2(5):20-35 ZHAO Keqin. The application of SPA-based identical-discrepancy-contrary system theory in artificial intelligence research[J]. CAAI transactions on intelligent systems, 2007, 2(5):20-35
[22] PAN Zhengwei, WANG Yanhua, JIN Juliang, et al. Set pair analysis method for coordination evaluation in water resources utilizing conflict[J]. Physics and chemistry of the earth, parts A/B/C, 2017, 101:149-156.
[23] YU Furong, QU Jihong, LI Zhiping, et al. Application of set pair analysis based on the improved five-element connectivity in the evaluation of groundwater quality in Xuchang, Henan Province, China[J]. Water science and technology:water supply, 2017, 17(3):632-642.
[24] YAN Fang, XU Kaili. Application of a cloud model-set pair analysis in hazard assessment for biomass gasification stations[J]. PLoS one, 2017, 12(1):e0170012.
[25] YAN Fang, XU Kaili, LI Deshun, et al. Hazard assessment for biomass gasification station using general set pair analysis[J]. Bioresources technology, 2016, 11(4):8307-8324.
[26] TAN Chong, SONG Yi, CHE Heng. Application of set pair analysis method on occupational hazard of coal mining[J]. Safety science, 2017, 92:10-16.
[27] LI Chunhui, SUN Lian, JIA Junxiang, et al. Risk assessment of water pollution sources based on an integrated k-means clustering and set pair analysis method in the region of Shiyan, China[J]. Science of the total environment, 2016, 557/558:307-316.
[28] WANG Ya, ZHOU Lihua. Assessment of the coordination ability of sustainable social-ecological systems development based on a set pair analysis:a case study in Yanchi County, China[J]. Sustainability, 2016, 8(8):733.
[29] WANG Mingwu, XU Xinyu, LI Jian, et al. A novel model of set pair analysis coupled with extenics for evaluation of surrounding rock stability[J]. Mathematical problems in engineering, 2015, 2015:892549.
[30] ZHANG Jian, YANG Xiaohua, LI Yuqi. A refined rank set pair analysis model based on wavelet analysis for predicting temperature series[J]. International journal of numerical methods for heat and fluid flow, 2015, 25(5):974-985.
[31] YANG Xiaohua, SUN Boyang, ZHANG Jian, et al. Hierarchy evaluation of water resources vulnerability under climate change in Beijing, China[J]. Natural hazards, 2016, 84(Suppl 1):63-76.
[32] XIE Xuecai, GUO Deyong. Human factors risk assessment and management:process safety in engineering[J]. Process safety and environmental protection, 2018(113):467-482.
[33] WEI Chao, DAI Xiaoyan, YE Shufeng, et al. Prediction analysis model of integrated carrying capacity using set pair analysis[J]. Ocean and coastal management, 2016, 120:39-48.
[34] BAO Danwen, ZHANG Xiaoling. Measurement methods and influencing mechanisms for the resilience of large airports under emergency events[J]. Transportmetrica A:transport science, 2018, 14(10):855-880.
[35] GARG H, KUMAR K. An advanced study on the similarity measures of intuitionistic fuzzy sets based on the set pair analysis theory and their application in decision making[J]. Soft computing, 2018, 22(15):4959-4970.
[36] YAN Fang, XU Kaili. A set pair analysis based layer of protection analysis and its application in quantitative risk assessment[J]. Journal of loss prevention in the process industries, 2018, 55:313-319.
[37] LI Peiyue, QIAN Hui, WU Jianhua. Application of set pair analysis method based on entropy weight in groundwater quality assessment-a case study in Dongsheng City, Northwest China[J]. Journal of chemistry, 2010, 8(2):851-858.
[38] ZENG Jiajun, HUANG Guoru. Set pair analysis for karst waterlogging risk assessment based on AHP and entropy weight[J]. Hydrology research, 2017, 49(4):1143-1155.
[39] KUMAR K, GARG H. Connection number of set pair analysis based TOPSIS method on intuitionistic fuzzy sets and their application to decision making[J]. Applied intelligence, 2018, 48(8):2112-2119.
[40] GARG H, KUMAR K. Some aggregation operators for linguistic intuitionistic fuzzy set and its application to group decision-making process using the set pair analysis[J]. Arabian journal for science and engineering, 2018, 43(6):3213-3227.
[41] FENG Yixiong, LU Runjie, GAO Yicong, et al. Multi-objective optimization of VBHF in sheet metal deep-drawing using Kriging, MOABC, and set pair analysis[J]. The international journal of advanced manufacturing technology, 2018, 96(9/10/11/12):3127-3138.
[42] 赵克勤. 偏联系数[C]//中国人工智能进展2005. 北京:北京邮电大学出版社, 2005:884–885. ZHAO Keqin. Partial connection number[C]//Progress of Artificial Intelligence 2005. Beijing:Progress of Beijing University of Posts and Telecommunications (BUPT) Publishing House, 2005:884–885.
[43] 施志坚, 王华伟, 王祥. 基于多元联系数集对分析的航空维修风险态势评估[J]. 系统工程与电子技术, 2016, 38(3):588-594 SHI Zhijian, WANG Huawei, WANG Xiang. Risk state evaluation of aviation maintenance based on multiple connection number set pair analysis[J]. Systems engineering and electronics, 2016, 38(3):588-594
[44] 李聪, 陈建宏, 杨珊, 等. 五元联系数在地铁施工风险综合评价中的应用[J]. 中国安全科学学报, 2013, 23(10):21-26 LI Cong, CHEN Jianhong, YANG Shan, et al. Application of five-element connection number to comprehensive evaluation of risks involved with subway construction[J]. China safety science journal, 2013, 23(10):21-26
[45] 谢红涛, 李波, 赵云胜. 基于联系数的地铁隧道施工邻近建筑物风险评价[J]. 工业安全与环保, 2014, 40(7):16-19 XIE Hongtao, LI Bo, ZHAO Yunsheng. Risk assessment of neighboring building in metro tunneling construction based on connection number[J]. Industrial safety and environmental protection, 2014, 40(7):16-19
[46] 马成正, 王洪德. 联系数在地铁车站火灾安全风险评价中的应用[J]. 辽宁工程技术大学学报(自然科学版), 2015, 37(1):26-31 MA Chengzheng, WANG Hongde. Application of connection number to safety risk evaluation of fire accident in subway station[J]. Journal of Liaoning Technical University (Natural Science Edition), 2015, 37(1):26-31
[47] 金菊良, 沈时兴, 潘争伟, 等. 水资源集对分析理论与应用研究进展[J]. 华北水利水电大学学报(自然科学版), 2017, 38(4):54-66 JIN Juliang, SHEN Shixing, PAN Zhengwei, et al. Advances in theoretical and applied research on set pair analysis method for water resources system[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2017, 38(4):54-66
[48] 李子彪, 张静, 李林琼. 区域创新极创新态势测度方法研究:对北京的集对分析[J]. 科技进步与对策, 2016, 33(15):111-117 LI Zibiao, ZHANG Jing, LI Linqiong. Study on the measure method of regional innovation poles innovation trend based on set pair analysis[J]. Science and technology progress and policy, 2016, 33(15):111-117
[49] 李柏洲, 李新. 基于集对分析的企业技术依赖预警及其演化趋势测度[J]. 运筹与管理, 2015, 24(2):262-271 LI Baizhou, LI Xin. Technology dependence early warning and evolution tendency evaluation based on set pair analysis[J]. Operations research and management science, 2015, 24(2):262-271
[50] 吴亭. 五元联系数在学生成绩发展趋势分析中的应用[J]. 数学的实践与认识, 2009, 39(5):53-59 WU Ting. Application on the analysis of developmental trend of the student mark with five-element partial connection number[J]. Mathematics in practice and theory, 2009, 39(5):53-59
[51] 赵金楼, 高宏玉, 成俊会. 基于三元联系数的网络舆情传播中主体参与意愿演化评价方法[J]. 情报科学, 2017, 35(8):118-120, 140 ZHAO Jinlou, GAO Hongyu, CHENG Junhui. Research on evolution of participation willingness in network public opinion:based on three-element connection number[J]. Information science, 2017, 35(8):118-120, 140
[52] 杨斯玲, 蒋根谋. 基于约束理论和集对分析的EPC建筑供应链风险管理[J]. 技术经济, 2016, 35(8):111-117 YANG Siling, JIANG Genmou. Risk management of EPC construction supply chain based on theory of constraints and set pair analysis[J]. Technology economics, 2016, 35(8):111-117
[53] 高晓辉. 基于联系数的老年人健康状态潜在发展趋势分析[J]. 中国卫生统计, 2012, 29(2):265-266 GAO Xiaohui. Analysis of medical quality development trend based on the concomitant function of contact number[J]. Chinese journal of health statistics, 2012, 29(2):265-266
[54] 周兴慧, 张吉军. 基于五元联系数的风险综合评价方法及其应用[J]. 系统工程理论与实践, 2013, 33(8):2169-2176 ZHOU Xinghui, ZHANG Jijun. Risk comprehensive evaluation method and its application based on the five-element connection number[J]. Systems engineering -theory and practice, 2013, 33(8):2169-2176
[55] 晏燕, 王万军. 偏联系数隐私风险态势评估方法[J]. 计算机工程与应用, 2018, 54(10):143-148 YAN Yan, WANG Wanjun. Privacy risk situation assessment method based on partial connection numbers[J]. Computer engineering and applications, 2018, 54(10):143-148
[56] 张萌萌, 刘以安, 宋萍. 偏联系数聚类和随机森林算法在雷达信号分选中的应用[J]. 激光与光电子学进展, 2019, 56(6):062604 ZHANG Mengmeng, LIU Yian, SONG Ping. Applications of partial connection clustering algorithm and random forest algorithm in radar signal sorting[J]. Laser & optoelectronics progress, 2019, 56(6):062604
[57] 赵克勤. 反偏联系数[C]//中国人工智能学会第12届全国学术年会论文汇编. 哈尔滨, 中国, 2007:66?67.
[58] 金菊良, 张浩宇, 宁少尉, 等. 效应全偏联系数及其在区域水资源承载力评价中的应用[J]. 华北水利水电大学学报(自然科学版), 2019, 40(1):1-8 JIN Juliang, ZHANG Haoyu, NING Shaowei, et al. Effect full partial connection number and its application in evaluation of regional water resources carrying capacity[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2019, 40(1):1-8
[59] 赵克勤, 宣爱理. 集对论:一种新的不确定性理论方法与应用[J]. 系统工程, 1996, 14(1):16-23, 72 ZHAO Keqin, XUAN Aili. Set pair theory:A new theory method of non-define and its applications[J]. Systems engineering, 1996, 14(1):16-23, 72
[60] 蒋云良, 赵克勤. 集对分析在人工智能中的应用与进展[J]. 智能系统学报, 2019, 14(1):28-43 JIANG Yunliang, ZHAO Keqin. Application and development of set pair analysis in artificial intelligence:a survey[J]. CAAI transactions on intelligent systems, 2019, 14(1):28-43

相似文献/References:

[1]赵克勤.集对分析的不确定性系统理论在AI中的应用[J].智能系统学报,2006,1(02):16.
 ZHAO Ke-qin.The application of uncertainty systems theory of set pair analysis (SPU)in the artificial intelligence[J].CAAI Transactions on Intelligent Systems,2006,1(05):16.
[2]赵克勤.基于集对分析的不确定性多属性决策模型与算法[J].智能系统学报,2010,5(01):41.
 ZHAO Ke-qin.Decision making algorithm based on set pair analysis for use when facing multiple uncertain attributes[J].CAAI Transactions on Intelligent Systems,2010,5(05):41.
[3]赵森烽,赵克勤.概率联系数化的原理及其在概率推理中的应用[J].智能系统学报,2012,7(03):200.
 ZHAO Sengfeng,ZHAO Keqin.The principle of a connection number in probability and its application in probabilistic reasoning[J].CAAI Transactions on Intelligent Systems,2012,7(05):200.
[4]刘秀梅,赵克勤.基于联系数的不确定空情意图识别[J].智能系统学报,2012,7(05):450.
 LIU Xiumei,ZHAO Keqin.Inference method on intention with uncertain aerial information based on the connection number[J].CAAI Transactions on Intelligent Systems,2012,7(05):450.
[5]杨亚锋.基于集对逻辑的近似推理方法研究[J].智能系统学报,2015,10(6):921.[doi:10.11992/tis.201507044]
 YANG Yafeng.Research on approximate inference method based on set pair logic[J].CAAI Transactions on Intelligent Systems,2015,10(05):921.[doi:10.11992/tis.201507044]
[6]蒋云良,赵克勤.集对分析在人工智能中的应用与进展[J].智能系统学报,2019,14(01):28.[doi:10.11992/tis.201803030]
 JIANG Yunliang,ZHAO Keqin.Application and development of set pair analysis in artificial intelligence: a survey[J].CAAI Transactions on Intelligent Systems,2019,14(05):28.[doi:10.11992/tis.201803030]
[7]赵克勤,赵森烽.贝叶斯概率向赵森烽-克勤概率的转换与应用[J].智能系统学报,2015,10(01):51.[doi:10.3969/j.issn.1673-4785.201405022]
 ZHAO Keqin,ZHAO Senfeng.Bayes probability transition to Zhao Senfeng-Keqin probability and its application[J].CAAI Transactions on Intelligent Systems,2015,10(05):51.[doi:10.3969/j.issn.1673-4785.201405022]
[8]赵玉铃,张廉.集对分析联系数在黑启动vague集决策中的应用研究[J].智能系统学报,2014,9(05):632.[doi:10.3969/j.issn.1673-4785.201305002]
 ZHAO Yuling,ZHANG Lian.Application of the set-pair analysis connection numberin decision-making of black-start vague set[J].CAAI Transactions on Intelligent Systems,2014,9(05):632.[doi:10.3969/j.issn.1673-4785.201305002]

备注/Memo

备注/Memo:
收稿日期:2018-10-19。
基金项目:山西省高等学校科技创新项目(201804044).
作者简介:杨红梅,女,1965年生,副教授,山西省现代远程教育学会第6届理事,主要研究方向为数学与不确定性信息处理。发表论文10余篇,出版专著1部;赵克勤,男,1950年生,研究员,中国人工智能学会第3、4、5届理事,人工智能基础专业委员会副主任,主要研究方向为信息处理、集对分析、联系数学、联系科学。先后提出集对分析、联系数学、联系科学。发表论文100余篇,出版专著4部。
通讯作者:赵克勤.E-mail:zjzhaok@sohu.com
更新日期/Last Update: 1900-01-01