[1]于建均,李晨,左国玉,等.仿人机器人步态平衡泛化模型的建立与仿真[J].智能系统学报,2020,15(3):537-545.[doi:10.11992/tis.201810017]
 YU Jianjun,LI Chen,ZUO Guoyu,et al.Modeling and simulation of humanoid robot gait balance generalization[J].CAAI Transactions on Intelligent Systems,2020,15(3):537-545.[doi:10.11992/tis.201810017]
点击复制

仿人机器人步态平衡泛化模型的建立与仿真

参考文献/References:
[1] WANG Fei, WANG Yaning, WEN Shiguang, et al. Nao humanoid robot gait planning based on the linear inverted pendulum[C]//Proceedings of 2012 24th Chinese Control and Decision Conference. Taiyuan, China, 2012: 986-990.
[2] DONG Enzeng, WANG Dandan, CHEN Chao, et al. Realization of biped robot gait planning based on NAO robot development platform[C]//Proceedings of 2016 IEEE International Conference on Mechatronics and Automation. Harbin, China, 2016: 1073-1077.
[3] ZHANG Ying, LI Shuanghong, HAN Boyu, et al. Research on gait planning and inverse kinematics solving of biped walking robots[C]//Proceedings of 2015 8th International Symposium on Computational Intelligence and Design. Hangzhou, China, 2015: 629-632.
[4] KHAZENIFARD A, BAHRAMI F, ANDANI M E, et al. An energy efficient gait trajectory planning algorithm for a seven linked biped robot using movement elements[C]//Proceedings of 2015 23rd Iranian Conference on Electrical Engineering. Tehran, Iran, 2015: 1006-1011.
[5] 付根平, 杨宜民, 黄春林. 基于粒子群优化算法的双足机器人步态优化[J]. 华中科技大学学报(自然科学版), 2011, 39(S2): 355-358
FU Genping, YANG Yimin, HUANG Chunlin. Walking pattern optimization based on particle swarm optimization for biped robot[J]. Journal of Huazhong University of Science and Technology (nature science edition), 2011, 39(S2): 355-358
[6] YAMAGUCHI A, HYON S H, OGASAWARA T. Reinforcement learning for balancer embedded humanoid locomotion[C]//Proceedings of 2010 10th IEEE-RAS International Conference on Humanoid Robots. Nashville, USA, 2010: 308-313.
[7] KANG Zhongrun, DENG Muqing, WANG Cong. Frontal-view human gait recognition based on kinect Features and deterministic learning[C]//Proceedings of 2017 36th Chinese Control Conference. Dalian, China, 2017: 10834-10839.
[8] SELEEM I A, ASSAL S F M. Sliding mode control of underactuated five-link biped robot for climbing stairs based on real human data[C]//Proceedings of 2017 IEEE International Conference on Industrial Technology. Toronto, Canada, 2017: 878-883.
[9] 赵姝颖, 徐文杰, 郑雪林, 等. 基于体感的机器人展示系统研究与开发[J]. 机器人技术与应用, 2012(6): 54-57
ZHAO Shuying, XU Wenjie, ZHENG Xuelin, et al. Research and development of display system of Nao humanoid robot based on posture perception[J]. Robot technique and application, 2012(6): 54-57
[10] 于建均, 门玉森, 阮晓钢, 等. 基于Kinect的Nao机器人动作模仿系统的研究与实现[J]. 智能系统学报, 2016, 11(2): 180-187
YU Jianjun, MEN Yusen, RUAN Xiaogang, et al. The research and implementation of behavior imitation system about Nao robot based on Kinect[J]. CAAI transactions on intelligent systems, 2016, 11(2): 180-187
[11] SELEEM I A, ASSAL S F M, MOHAMED A M. Cyclic gait planning and control of underactuated five-link biped robot during single support and impact phases for normal walking[C]//Proceedings of 2018 IEEE International Conference on Industrial Technology. Lyon, France, 2018: 123-128.
[12] LIN Jinling, HWANG K S, JIANG Weicheng, et al. Gait balance and acceleration of a biped robot based on Q-learning[J]. IEEE access, 2016, 4: 2439-2449.
[13] CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297.
[14] 于建均, 张远, 左国玉, 等. 基于ZMP判据的仿人机器人步态模仿[J]. 北京工业大学学报, 2018, 44(9): 1187-1192
YU Jianjun, ZHANG Yuan, ZUO Guoyu, et al. Humanoid robot gait imitation based on ZMP criterion[J]. Journal of Beijing University of Technology, 2018, 44(9): 1187-1192
[15] ALZAQEBAH A, MASADEH R, HUDAIB A. Whale optimization algorithm for requirements prioritization[C]//Proceedings of 2018 9th International Conference on Information and Communication Systems. Irbid, Jordan, 2018: 84-89.
[16] FERREIRA J P, CRISóSTOMO M, COIMBRA A P. SVR control of the sagittal balance of a biped robot combining torso and ankle joints[C]//Proceedings of 2010 World Automation Congress. Kobe, Japan, 2010: 1-9.
[17] DING Zhen, YANG Chifu, XING Kai, et al. The real time gait phase detection based on long short-term memory[C]//Proceedings of 2018 IEEE Third International Conference on Data Science in Cyberspace. Guangzhou, China, 2018: 33-38.
[18] 雷森, 史振威, 石天阳, 等. 基于递归神经网络的风暴潮增水预测[J]. 智能系统学报, 2017, 12(5): 640-644
LEI Sen, SHI Zhenwei, SHI Tianyang, et al. Prediction of storm surge based on recurrent neural network[J]. CAAI transactions on intelligent systems, 2017, 12(5): 640-644
[19] FENG Yang, LI Yuncheng, LUO Jiebo, et al. Learning effective Gait features using LSTM[C]//Proceedings of 2016 23rd International Conference on Pattern Recognition. Cancun, Mexico, 2016: 325-330.
相似文献/References:
[1]陈雯柏,高世杰,吴细宝.基于HMCD的仿人机器人单杠运动控制策略[J].智能系统学报,2012,7(6):501.
 CHEN Wenbai,GAO Shijie,WU Xibao.HMCD based dynamic motion control strategy of? humanoid robot on a horizontal bar[J].CAAI Transactions on Intelligent Systems,2012,7():501.
[2]刘明华,张强.支持向量机与神经网络相结合的板带凸度预测[J].智能系统学报,2022,17(3):506.[doi:10.11992/tis.202101002]
 LIU Minghua,ZHANG Qiang.Prediction of strip crown based on support vector machine and neural network[J].CAAI Transactions on Intelligent Systems,2022,17():506.[doi:10.11992/tis.202101002]

备注/Memo

收稿日期:2018-10-16。
基金项目:国家自然科学基金项目(61873008);北京市自然科学基金项目(4182008)
作者简介:于建均,副教授,主要研究方向为智能机器人的仿生自主控制、智能计算与智能优化控制、复杂过程建模、优化与控制。主持或参与国家“863”计划项目、国家自然科学基金项目以及横向科研课题多项。获国家发明专利、实用新型专利、国家软件著作权等10余项,发表学术论文40余篇;李晨,硕士研究生,主要研究方向为机器学习、机器人技术;左国玉,副教授,博士,主要研究方向为智能技术系统、机器人学习、机器人控制、计算智能。主持和参与国家自然科学基金项目、北京市自然科学基金项目、北京市教委科技计划7项。获国家发明专利、实用新型专利10余项,发表学术论文30余篇
通讯作者:于建均.E-mail:yujianjun@bjut.edu.cn

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134