[1]黄心汉.微装配机器人:关键技术、发展与应用[J].智能系统学报,2020,15(3):413-424.[doi:10.11992/tis.201809031]
 HUANG Xinhan.Microassembly robot: key technology, development, and applications[J].CAAI Transactions on Intelligent Systems,2020,15(3):413-424.[doi:10.11992/tis.201809031]
点击复制

微装配机器人:关键技术、发展与应用(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年3期
页码:
413-424
栏目:
综述
出版日期:
2020-09-05

文章信息/Info

Title:
Microassembly robot: key technology, development, and applications
作者:
黄心汉
华中科技大学 人工智能与自动化学院,湖北 武汉 430074
Author(s):
HUANG Xinhan
School of Artificial Intelligence and Automation, Huanzhong University of Science and Technology, Wuhan 430074, China
关键词:
微装配机器人微机电系统尺度效应多尺度交叉显微视觉视觉伺服图像雅可比矩阵微夹持器
Keywords:
microassembly robotmicro-electro-mechanical systemscale effectmulti-scale crossovermicroscopic visionvisual servoimage Jacobian matrixmicro gripper
分类号:
TP242
DOI:
10.11992/tis.201809031
摘要:
微装配机器人是机器人研究和应用领域的一个重要方向和热点,有重要理论意义和应用前景。本文对微装配机器人的关键技术进行了详细介绍,包括微操作系统的基本概念、微装配机器人的工作原理、尺度效应、多尺度交叉、微夹持器技术、显微视觉与显微视觉伺服等。对国内外微装配机器人研究和发展现状进行了综述,最后对微装配机器人的应用范围和发展前景进行了展望。
Abstract:
Research on microassembly robot is an important field in robotic research; the research has important theoretical significance and numerous applications prospects. In this study, key technological aspects of microassembly robot, such as the basic concept of micro-operating system, working principle of microassembly robot, scale effect, multi-scale crossover, micro-gripper technology, microscopic vision, and micro-vision servo, are presented and analyzed in detail. Furthermore, the research and development of microassembly robot at home and abroad are discussed and reviewed. Finally, the application scope and developmental prospects of microassembly robots are examined.

参考文献/References:

[1] FEYNMAN R P. There is plenty of room at the bottom [EB/OL]. (1959-12-29) [2018-09-01] http://www.zyvex.com/nanotech/feynman.html.
[2] YANG Ge, GAINES J A, NELSON B J. A supervisory wafer-level 3D microassembly system for hybrid MEMS fabrication[J]. Journal of intelligent and robotic systems, 2003, 37(1): 43-68.
[3] FEDDEMA J T, SIMON R W. Visual servoing and CAD-driven microassembly[J]. IEEE robotics & automation magazine, 1998, 5(4): 18-24.
[4] YANG Ge. Scale-based integrated microscopic computer vision techniques for micromanipulation and microassembly[D]. Minnesota: University of Minnesota, 2004.
[5] 宗光华, 孙明磊, 毕树生, 等. 宏-微操作结合的自动微装配系统[J]. 中国机械工程, 2005, 16(23): 2125-2130
ZHONG Guanghua, SUN Minglei, BI Shusheng. Automatic microassembly system with macro-microoperation[J]. China mechanical engineering, 2005, 16(23): 2125-2130
[6] 黄心汉. 微装配机器人系统研究与实现[J]. 华中科技大学学报, 2011, 39(增刊Ⅱ): 418-422.
HUANG Xinhan. Research and realization of micro-assembly robot system. Journal of Huazhong[J]. Journal of Huazhong University of Science and Technology, 2011, 39(SupⅡ): 418-422.
[7] YANG Ge, GAINES J A, NELSON B J. A flexible experimental workcell for efficient and reliable wafer-level 3D micro-assembly[C]//Proceedings of 2001 IEEE International Conference on Robotics and Automation. Seoul, South Korea, 2001: 133-138.
[8] MEHREGANY M, BART S F, TAVROW L S, et al. A study of three microfabricated variable-capacitance motors[J]. Sensors and actuators, 1990, 21(23): 173-179.
[9] ZHANG Han, BELLOUARD Y, BURDET E, et al. Shape memory alloy microgripper for robotic microassembly of tissue engineering scaffolds[C]//Proceedings of IEEE International Conference on Robotics and Automation. New Orleans, USA, 2004: 4918-4924.
[10] HADDAB Y, CHAILLET N, BOURJAULT A. A microgripper using smart piezoelectric actuators[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Takamatsu, Japan, 2000: 659-664.
[11] ARAI F, ANDOU D, NONODA Y, et al. Integrated microendeffector for micromanipulation[J]. IEEE/ASME transactions on mechatronics, 1998, 3(1): 17-23.
[12] HUANG Xinhan, CAI Jianhua, WANG Min, et al. A piezoelectric bimorph micro-gripper with micro-force sensing[C]//Proceedings of 2005 IEEE International Conference on Information Acquisition. Hong Kong, China, 2005: 145-149.
[13] SATO T, KOYANO K, NAKAO M, et al. Novel manipulator for micro object handling as interface between micro and human worlds[C]//Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems. Yokohama, Japan, 1993: 1674-1681.
[14] ZESCH W, BRUNNER M, WEBER A. Vacuum tool for handling microobjects with a nanorobot[C]//Proceedings of IEEE International Conference on Robotics and Automation. Albuquerque, USA, 1997: 1761-1766.
[15] 卢桂章, 张建勋, 赵新. 面向生物工程实验的微操作机器人[J]. 南开大学学报(自然科学版), 1999, 32(3): 42-46
LU Guizhang, ZHANG Jianxun, ZHAO Xin. Microoperation robot for bioengineering experiment[J]. Journal of Nankai University (natural science edition), 1999, 32(3): 42-46
[16] 黄心汉, 刘畅, 王敏. 一种全自动真空吸附式微夹持器[J]. 智能技术学报, 2011, 3(2): 36-43
HUANG Xinhan, LIU chang, WANG Min. A automatic vacuum adsorption micro gripper[J]. Journal of intelligent technology, 2011, 3(2): 36-43
[17] SATO T, KAMEYA T, MIYAZAKI H, et al. Hand-eye system in Nano manipulation world[C]//Proceedings of 1995 IEEE International Conference on Robotics and Automation. Nagoya, Japan, 1995: 59-66.
[18] KOYANO K, SATO T. Micro object handling system with concentrated visual fields and new handling skills[C]//Proceedings of IEEE International Conference on Robotics and Automation. Minneapolis, USA, 1996: 2541-2548.
[19] PAPPAS I, CODOUREY A. Visual control of a microrobot operating under a microscope[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Osaka, Japan, 1996: 993-1000.
[20] RODRIGUEZ M A, CODOUREY A, PAPPAS I. Field experiences on the implementation of a graphical user interface in microrobotics[C]//Proceedings of SPIE Conference on Microrobotics: Components and Applications. Boston, USA, 1996: 196-201.
[21] RODRIGUEZ M, CODOUREY A. Graphical user interface to manipulate objects in the micro world with a high precision robot[C]//Proceedings of IEEE International Conference on Robotics and Automation. Albuquerque, USA, 1997: 3031-3036.
[22] SULZMANN A, BREGUET J M, JACOT J. Microvision system (MVS): a 3D computer graphic-based microrobot telemanipulation and position feedback by vision[C]//Proceedings of SPIE Conference on Microrobotics and Micromechanical Systems. Philadelphia, USA, 1995: 38-49.
[23] SULZMANN A, BREGUET J M, JACOT J. Micromotor assembly using high accurate optical vision feedback for microrobot relative 3D displacement in submicron range[C]//Proceedings of International Solid State Sensors and Actuators Conference. Chicago, USA, 1997: 279-282.
[24] FATIKOW S, BUERKLE A, SEYFRIED F. Automatic control system of a microrobot-based microassembly station using computer vision[C]//Proceedings of SPIE Microrobotics and Microassembly. Boston, USA, 1999: 11-22.
[25] PARVIN B, CALLAHAN D E, JOHNSTON W, et al. Visual servoing for micro-manipulation[C]//Proceedings of International Conference on Pattern Recognition. Vienna, Austria, 1996: 341-345.
[26] FEDDEMA J T, SIMON R W. CAD-driven microassembly and visual servoing[C]//Proceedings of IEEE International Conference on Robotics and Automation. Leuven, Belgium, 1998: 1212-1219.
[27] FERREIRA A, CASSIER C, HIRAI S. Automatic microassembly system assisted by vision servoing and virtual reality[J]. IEEE/ASME transactions on mechatronics, 2004, 9(2): 321-333.
[28] VIKRAMADITYA B, NELSON B J. Visually guided microassembly using optical microscopes and active vision techniques[C]//Proceedings of IEEE International Conference on Robotics and Automation. Albuquerque, USA, 1997: 3172-3177.
[29] ZHOU Yu, NELSON B J. Calibration of a parametric model of an optical microscope[J]. Optical engineering, 1999, 38(12): 1989-1995.
[30] ZHOU Y, NELSON B J, VIKRAMADITYA B. Fusing force and vision feedback for micromanipulation[C]//Proceedings of 1998 IEEE International Conference on Robotics and Automation. Leuven, Belgium, 1998: 1220-1225.
[31] RALIS S J, VIKRAMADITYA B, NELSON B J. Micropositioning of a weakly calibrated microassembly system using coarse-to-fine visual servoing strategies[J]. IEEE transactions on electronics packaging manufacturing, 2000, 23(2): 123-131.
[32] MUKUNDAKRISHNAN B, NELSON B J. Micropart feature design for visually servoed microassembly[C]//Proceedings of IEEE International Conference on Robotics and Automation. San Francisco, USA, 2000: 965-970.
[33] YANG Ge, GAINES J A, NELSON B J. Optomechatronic design of microassembly systems for manufacturing hybrid microsystems[J]. IEEE transactions on industrial electronics, 2005, 52(4): 1013-1023.
[34] YANG Ge, NELSON B J. Wavelet-based autofocusing and unsupervised segmentation of microscopic images[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA, 2003: 2143-2148.
[35] YANG Ge, NELSON B J. Micromanipulation contact transition control by selective focusing and microforce control[C]//Proceedings of 2003 IEEE International Conference on Robotics and Automation. Taipei, China, 2003: 3200-3206.
[36] YESIN K B, NELSON B J. A CAD model based tracking system for visually guided microassembly[J]. Robotica, 2005, 23(4): 409-418.
[37] GREMINGER M A, NELSON B J. Modeling elastic objects with neural networks for vision-based force measurement[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA, 2003: 1278-1283.
[38] GREMINGER M A, NELSON B J. Vision-based force measurement[J]. IEEE transactions on pattern analysis and machine intelligence, 2004, 26(3): 290-298.
[39] 赵玮, 宗光华, 毕树生. 微操作机器人的视觉伺服控制[J]. 机器人, 2001, 23(2): 146-151
ZHAO Wei, ZHONG Guanghua, BI Shusheng. Visual servo control of micro-operated robot[J]. Robotics, 2001, 23(2): 146-151
[40] 谢晖, 孙立宁, 荣伟彬. 基于改进Smith预估器的显微视觉伺服[J]. 光学精密工程, 2006, 14(2): 284-290
XIE Hui, SUN Lining, RONG Weibin. Rong Weibin. Microscopic vision servo based on improved Smith predictability[J]. Optical precision engineering, 2006, 14(2): 284-290
[41] 席文明, 朱剑英. 基于分层神经网络的微装配全局-局部视觉伺服研究[J]. 机械工程学报, 2002, 38(10): 139-143
XI Wenming, ZHU Jianying. Research on global-local visual servo based on stratified neural networks[J]. Journal of mechanical engineering, 2002, 38(10): 139-143
[42] 黄心汉, 王敏, 吕遐东, 等. 基于显微视觉伺服的双手协调微操作机器人系统研究[C]//中国人工智能学会第11届全国学术年会论文集(下). 武汉, 中国, 2005: 1017-1023.
HUANG Xinhan, WANG Min, LV Xiadong, et al. Research on the dual-handed coordinated microoperation robot system based on microscopic visual servo[C]//Proceedings of the 11th National Academic Annual Conference of China Artificial Intelligence Society (Part II). Wuhan, China, 2005: 1017-1023.
[43] 孙立宁, 孙绍云, 荣伟彬, 等. 微操作机器人的发展现状[J]. 机器人, 2002, 24(2): 184-187
SUN Lining, SUN Shaoyun, RONG Weibin, et al. Development status of micro-operated robot[J]. Robotics, 2002, 24(2): 184-187
[44] HATAMURA Y, MORISHITA H. Direct coupling system between nanometer world and human world[C]//Proceedings of IEEE Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robot. Napa Valley, USA, 1990: 203-208.
[45] MORISHITA H, HATAMURA Y. Development of ultra-micromanipulator system under stereo SEM observation [C]//Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems. Yokohama, Japan, 1993: 1717-1721.
[46] FUKUDA T, FUJIYOSHI M, ARAI F. et al. Design and dextrous control of micromanipulator with 6 DOF[C]// Proceedings of 1991 IEEE International Conference on Robotics and Automation. Sacramento, USA, 1991: 1628-1633.
[47] JOHANSSON S. Hybrid techniques in microrobotics[C]//Proceedings of 1st IARP Workshop on Micro Robotics and Systems. Karlsruhe, Germany, 1993: 72-83.
[48] CODOUREY A, ZESCH W, BUCHI R, et al. A robot system for automated handling in micro-world[C]//Proceedings of 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots. Pittsburgh, USA, 1995: 185-190.
[49] CODOUREY A, RODRIGUEZ M, PAPPAS I. A task-oriented teleoperation system for assembly in the microworld[C]//Proceedings of 1997 IEEE International Conference on Advanced Robotics. Monterey, USA, 1997: 235-240.
[50] SCHMOECKEL F, FATIKOW S. Smart flexible microrobots for scanning electron microscope (SEM) applications[J]. Journal of intelligent material systems and structures, 2000, 11(3): 191-198.
[51] SCHMOECKEL F, FAHLBUSCH S, SEYFRIED J, BURKLE A, et al. Development of a microrobot-based micromanipulation cell in a scanning electron microscope (SEM)[C]//Proceedings of SPIE Microrobotics and Microassembly II. Boston, USA, 2000: 129-140.
[52] YU Sun, NELSON B J. Microrobotic cell injection[C]//Proceedings of IEEE International Conference on Robotics and Automation. Seoul, South Korea, 2001: 620-625.
[53] Montesanti R C. Lessons from building fusion ignition targets with the precision robotic assembly machine[C]//19th Target Fabrication Meeting. Washington, USA, 2009.
[54] 李银妹, 楼立人, 操传顺, 等. 细胞激光微操作系统[J]. 细胞生物学杂志, 1999, 21(2): 67-71
LI Yinmei, LOU Liren, CAO Chuanshun, et al. Cell Laser Microoperation System[J]. Journal of cell biology, 1999, 21(2): 67-71
[55] 赵玮, 于靖军, 毕树生, 等. 串并联微操作机器人系统的研究[J]. 北京航空航天大学学报, 2001, 27(6): 623-627
ZHAO Wei, YU Jingjun, BI Shusheng, et al. Research on serial parallel microoperation robot system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(6): 623-627
[56] 毕树生, 宗光华. 微操作机器人系统的研究开发[J]. 中国机械工程, 1999, 10(9): 1024-1027
BI Shusheng, ZONG Guanghua. Research and development of micro operating robot system[J]. China mechanical engineering, 1999, 10(9): 1024-1027
[57] 孙立宁, 孙绍云, 荣伟彬, 等. 基于PZT的宏/微驱动机器人研究[J]. 哈尔滨工业大学学报, 2004, 36(1): 16-19
SUN Lining, SUN Shaoyun, RONG Weibin, et al. A study of macro-micro-drive robot based on PZT[J]. Journal of Harbin Institute of Technology, 2004, 36(1): 16-19
[58] TIAN Xiaojun, LIU Lianqing, JIAO Niandong, et al. 3D Nano forces sensing for an AFM based nanomanipulator[C]//Proceedings of IEEE International Conference on Information Acquisition. Hefei, China, 2004: 208-212.
[59] HUANG Xinhan, LV Xiadong, WANG Min. Development of a robotic microassembly system with multi-manipulator cooperation[C]//Proceedings of IEEE International Conference on Mechatronics and Automation. Luoyang, China, 2006: 1197-1201.

备注/Memo

备注/Memo:
收稿日期:2018-09-15。
基金项目:国家自然科学基金项目(60275013,60873032)
作者简介:黄心汉,教授,博士生导师,中国人工智能学会会士,智能机器人专业委员会名誉主任,主要研究方向为智能控制、智能机器人、信息融合、图像处理与模式识别。主持国家自然科学基金、国家863计划、国家科技支撑计划、国防军事预研以及省部级和横向科研项目60余项,获得专利11项。享受国务院政府特殊津贴,湖北省有突出贡献的中青年专家。发表学术论文300余篇,出版专著4部、译著2本
通讯作者:黄心汉.E-mail:xhhuang@mail.hust.edu.cn
更新日期/Last Update: 1900-01-01