[1]狄岚,赵树志,何锐波.基于光照预处理与特征提取的纺织品瑕疵检测方法[J].智能系统学报,2019,14(04):716-724.[doi:10.11992/tis.201805023]
 DI Lan,ZHAO Shuzhi,HE Ruibo.Fabric defect inspection based on illumination preprocessing and feature extraction[J].CAAI Transactions on Intelligent Systems,2019,14(04):716-724.[doi:10.11992/tis.201805023]
点击复制

基于光照预处理与特征提取的纺织品瑕疵检测方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年04期
页码:
716-724
栏目:
出版日期:
2019-07-02

文章信息/Info

Title:
Fabric defect inspection based on illumination preprocessing and feature extraction
作者:
狄岚 赵树志 何锐波
江南大学 数字媒体学院, 江苏 无锡 214000
Author(s):
DI Lan ZHAO Shuzhi HE Ruibo
School of Digital Media, Jiangnan University, Wuxi 214000, China
关键词:
光照预处理局部对比度增强完整局部二值模式格分割KLD散度特征提取纺织品瑕疵检测
Keywords:
illumination preprocessinglocal contrast enhancementCLBP (complete local binary pattern)lattice segmentationKullbac–Leibler divergencefeature extractionfabric defect inspection
分类号:
TS131.9
DOI:
10.11992/tis.201805023
摘要:
针对光照对纺织品图像特征提取的影响以及传统完整局部二值模式(complete local binary pattern)算法的局限性,本文提出了一种基于局部对比度增强(local contrast enhancement )算法的改进CLBP特征提取方法并将其应用到纺织品瑕疵检测中。该方法采用局部对比度增强算法对受光照影响的纺织品图像进行预处理,使用改进CLBP算法对分块后(格分割)图像进行特征提取,计算每一格子特征值与标准特征值的KLD散度并与训练得到的阈值进行比较,大于阈值格子标记为瑕疵。使用本文方法在标准星形(star)数据库与箱形(box)数据库中实验结果表明,该方法与其他预处理方法相比有更加出色的处理效果,大部分检测结果的查全率均可达到0.99左右。
Abstract:
In this study, a modified complete local binary pattern (CLBP) feature extraction method based on the local contrast enhancement is proposed to address the influence of illumination on the feature extraction of fabrics and the limitations of the traditional CLBP algorithms. In this method, a local contrast enhancement algorithm is used to preprocess the fabric images that are affected by illumination, and the modified CLBP algorithm is used to calculate the feature value of every lattice in every image after lattice segmentation and to subsequently calculate the relative divergence KLD between the feature of every lattice and the standard feature value. Subsequently, the calculated relative divergence will be compared with the threshold, and the lattice that exhibits a value larger than the threshold is considered to be a defect area. The experimental results obtained using the standard star pattern and the box pattern databases denote that the proposed method is better than the remaining preprocessing methods, and the recall rate of the majority of the detection results obtained using this method can reach approximately 0.99.

参考文献/References:

[1] NGAN H Y T, PANG G K H, YUNG S P, et al. Wavelet based methods on patterned fabric defect detection[J]. Pattern recognition, 2005, 38(4):559-576.
[2] NGAN H Y T, PANG G K H. Novel method for patterned fabric inspection using bollinger bands[J]. Optical engineering, 2006, 45(8):087202.
[3] NGAN H Y T, PANG G K H. Regularity analysis for patterned texture inspection[J]. IEEE transactions on automation science and engineering, 2009, 6(1):131-144.
[4] TSANG C S C, NGAN H Y T, PANG G K H. Fabric inspection based on the Elo rating method[J]. Pattern recognition, 2016, 51:378-394.
[5] JIA Liang, CHEN Chen, LIANG Jiuzhen, et al. Fabric defect inspection based on lattice segmentation and Gabor filtering[J]. Neurocomputing, 2017, 238:84-102.
[6] BELHUMEUR P N, KRIEGMAN D J. What is the set of images of an object under all possible illumination conditions[J]. International journal of computer vision, 1998, 28(3):245-260.
[7] 王霞玲, 吕岳, 文颖. 复杂背景和非均匀光照环境下的条码自动定位和识别[J]. 智能系统学报, 2010, 5(1):35-40 WANG Xialing, LÜ Yue, WEN Ying. Automatic location and recognition of barcodes on objects with complex background and non-uniform lighting[J]. CAAI transactions on intelligent systems, 2010, 5(1):35-40
[8] 黄腾, 施鹏飞. 非均匀光照下的车牌定位方法[J]. 智能系统学报, 2009, 4(5):421-426 HUANG Teng, SHI Pengfei. Locating vehicle license plates in a non-uniformly illuminated environment[J]. CAAI transactions on intelligent systems, 2009, 4(5):421-426
[9] CANDES E J, DONOHO D L. Curvelets-a surprisingly effective nonadaptive representation for objects with edges[M]. Nashville, TN:Vanderbilt University Press, 1999:1-10.
[10] WANG Haitao, LI S Z. WANG Yangsheng, et al. Self quotient image for face recognition[C]//Proceedings of 2004 International Conference on Image Processing. Singapore, Singapore, 2004:1397-1400.
[11] LAND E H. Recent advances in Retinex theory[J]. Vision research, 1986, 26(1):7-21.
[12] LANGE C, POLTHIER K. Anisotropic smoothing of point sets[J]. Computer aided geometric design, 2005, 22(7):680-692.
[13] KAO Wenchung, HSU M C, YANG Y Y. Local contrast enhancement and adaptive feature extraction for illumination-invariant face recognition[J]. Pattern recognition, 2010, 43(5):1736-1747.
[14] 王美, 梁久祯. 自适应特征提取的光照鲁棒性人脸识别[J]. 计算机工程与应用, 2012, 48(11):164-169 WANG Mei, LIANG Jiuzhen. Adaptive feature extraction for illumination invariant face recognition[J]. Computer Engineering and Applications, 2012, 48(11):164-169
[15] GUO Zhenhua, ZHANG Lei, ZHANG D. A completed modeling of local binary pattern operator for texture classification[J]. IEEE transactions on image processing, 2010, 19(6):1657-1663.
[16] WEN Jia, ZHAO Junsuo, WANG Cailing. Improved morphological component analysis for interference hyperspectral image decomposition[J]. Computers & electrical engineering, 2015, 46:394-402.
[17] 周宇旋, 吴秦, 梁久祯. 判别性完全局部二值模式人脸表情识别[J]. 计算机工程与应用, 2017, 53(4):163-169 ZHOU Yuxuan, WU Qin, LIANG Jiuzhen. Facial expression recognition based on discriminative CLBP[J]. Computer engineering and applications, 2017, 53(4):163-169
[18] DO M N, VETTERLI M. The contourlet transform:an efficient directional multiresolution image representation[J]. IEEE transactions on image processing, 2005, 14(12):2091-2106.
[19] 赵树志, 狄岚, 何锐波. 基于改进判别性完整局部二值模式与格分割的织物瑕疵检测方法[J]. 纺织学报, 2018, 39(9):57-64 ZHAO Shuzhi, DI Lan, HE Ruibo. Fabric defect detection based on modified discriminant complete local binary pattern and lattice segmentation[J]. Journal of textile research, 2018, 39(9):57-64

备注/Memo

备注/Memo:
收稿日期:2018-05-16。
基金项目:江苏省六大人才高峰项目(DZXX-028);江苏省研究生科研与实践创新计划项目(SJCX18_0648);浙江省公益技术研究社会发展项目(2017C33223).
作者简介:狄岚,女,1965年生,副教授,江苏省"六大人才高峰"资助对象,主要研究方向为模式识别与图像处理。获得省部级奖4项。发表学术论文40余篇,出版专著1部;赵树志,男,1994年生,硕士研究生,主要研究方向为机器视觉和纺织品瑕疵检测应用;何锐波,男,1994年生,硕士研究生,主要研究方向图像处理和机器学习。
通讯作者:狄岚.E-mail:dilan126@163.com
更新日期/Last Update: 2019-08-25