字符串 ') and Issue_No=(select Issue_No from OA where Script_ID=@Script_ID) order by ID ' 后的引号不完整。 ') and Issue_No=(select Issue_No from OA where Script_ID=@Script_ID) order by ID ' 附近有语法错误。 面向中文开放领域的多元实体关系抽取研究-《智能系统学报》

[1]姚贤明,甘健侯,徐坚.面向中文开放领域的多元实体关系抽取研究[J].智能系统学报,2019,14(03):597-604.[doi:10.11992/tis.201805006]
 YAO Xianming,GAN Jianhou,XU Jian.Chinese open domain oriented n-ary entity relation extraction[J].CAAI Transactions on Intelligent Systems,2019,14(03):597-604.[doi:10.11992/tis.201805006]
点击复制

面向中文开放领域的多元实体关系抽取研究(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年03期
页码:
597-604
栏目:
出版日期:
2019-05-05

文章信息/Info

Title:
Chinese open domain oriented n-ary entity relation extraction
作者:
姚贤明1 甘健侯2 徐坚1
1. 曲靖师范学院 信息工程学院, 云南 曲靖 655011;
2. 云南师范大学 民族教育信息化教育部重点实验室, 云南 昆明 650500
Author(s):
YAO Xianming1 GAN Jianhou2 XU Jian1
1. School of Information Engineering, Qujing Normal University, Qujing 655011, China;
2. Key Laboratory of Educational Informatization for Nationalities (YNNU), Ministry of Education, Kunming 650500, China
关键词:
中文、开放域多元实体关系依存句法分析句法结构关系抽取语义关系主谓宾
Keywords:
Chinese open domainn-ary entity relationdependency syntax analysissemantic structurerelation extractionsemantic relationsubject predicate object
分类号:
TP311
DOI:
10.11992/tis.201805006
摘要:
针对当前中文开放领域多元实体关系抽取研究较少的情况,借鉴国外已有的研究成果,结合中文自身的特点,提出了中文领域多元实体关系抽取的方法。该方法以句法分析结果的根节点作为入口,迭代地获取所有谓语的主语、宾语及其定语成分,再利用句法分析结果对这些成分进行完善,最终获取句子中的多个实体之间的语义关系。该方法被应用在不同的领域并进行了对比分析,实验结果表明:其具有一定的参考价值。另外,对实验数据进行了详细的分析,归纳了错误的主要情形,为今后的研究工作指明了方向。
Abstract:
In view of the scant research conducted regarding n-ary entity relation extraction in the Chinese open domain, in this paper, we propose a method for performing n-ary entity relation extraction in the Chinese domain based on existing research conducted abroad and Chinese characteristics. Starting with the root node of syntactic analysis, we obtain the subject, object, and attributive components of all the predicates. Then, we use the syntactic analysis result to perfect these elements and, finally, obtain the semantic relations of the n-ary entity. For comparative analysis, we applied the proposed method to different domains. The experimental results demonstrate its reference value. In addition, we analyzed the experimental data in detail and have summarized the main errors, which indicate the direction for future research.

参考文献/References:

[1] CHINCHOR N, MARSH E. MUC-7 information extraction task definition (version 5.1)[C]//Proceedings of the Seventh Message Understanding Conference. Fairfax, Virginia, USA, 1998.
[2] 甘丽新, 万常选, 刘德喜, 等. 基于句法语义特征的中文实体关系抽取[J]. 计算机研究与发展, 2016, 53(2):284-302 GAN Lixin, WAN Changxuan, LIU Dexi, et al. Chinese named entity relation extraction based on syntactic and semantic features[J]. Journal of computer research and development, 2016, 53(2):284-302
[3] JAYRAM T S, KRISHNAMURTHY R, RAGHAVAN S, et al. AVATAR information extraction system[J]. IEEE data engineering bulletin, 2006, 29:1-9.
[4] SHEN W, DOAN A H, NAUGHTON J F, et al. Declarative information extraction using datalog with embedded extraction predicates[C]//Proceedings of the 33rd International Conference on Very Large Data Bases. Vienna, Austria, 2007:1033-1044.
[5] ZHAO Shubin, GRISHMAN R. Extracting relations with integrated information using kernel methods[C]//Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Ann Arbor, Michigan, 2005:419-426.
[6] TRATZ S, HOVY E. ISI:automatic classification of relations between nominals using a maximum entropy classifier[C]//Proceedings of the 5th International Workshop on Semantic Evaluation. Los Angeles, California, 2010:222-225.
[7] HASEGAWA T, SEKINE S, GRISHMAN R. Discovering relations among named entities from large corpora[C]//Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. Barcelona, Spain, 2004:Article No.415.
[8] SHINYAMA Y, SEKINE S. Preemptive Information extraction using unrestricted relation discovery[C]//Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics. New York, USA, 2006:304-311.
[9] BANKO M, CAFARELLA M J, SODERLAND S, et al. Open information extraction from the web[C]//Proceedings of the 20th International Joint Conference on Artifical Intelligence. Hyderabad, India, 2007:2670-2676.
[10] SEKINE S, SUDO K, NOBATA C. Extended named entity hierarchy[C]//Proceedings of the 3rd International Conference on Language Resources and Evaluation. New York, USA, 2002:1818-1824.
[11] LING Xiao, WELD D S. Fine-grained entity recognition[C]//Proceedings of the 26th Conference on Advancement of Artificial Intelligence. Toronto, Canada, 2012:94-100.
[12] 杨博, 蔡东风, 杨华. 开放式信息抽取研究进展[J]. 中文信息学报, 2014, 28(4):1-11 YANG Bo, CAI Dongfeng, YANG Hua. Progress in open information extraction[J]. Journal of Chinese information processing, 2014, 28(4):1-11
[13] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4):589-606 XU Zenglin, SHENG Yongpan, HE Lirong, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4):589-606
[14] YATES A, CAFARELLA M, BANKO M, et al. TextRunner:open information extraction on the web[C]//Proceedings ofHuman Language Technologies:the Annual Conference of the North American Chapter of the Association for Computational Linguistics:Demonstrations. Rochester, New York, USA, 2007:25-26.
[15] ETZIONI O, CAFARELLA M, DOWNEY D, et al. Unsupervised named-entity extraction from the Web:an experimental study[J]. Artificial intelligence, 2005, 165(1):91-134.
[16] WU Fei, WELD D S. Open information extraction using Wikipedia[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Uppsala, Sweden, USA, 2010:118-127.
[17] FADER A, SODERLAND S, ETZIONI O. Identifying relations for open information extraction[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Edinburgh, United Kingdom, 2011:1535-1545.
[18] ETZIONI O, FADER A, CHRISTENSEN J, et al. Open information extraction:the second generation[C]//Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence. Barcelona, Catalonia, Spain, 2011:3-10.
[19] MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the Afnlp. Suntec, Singapore, 2009:1003-1011.
[20] 李杨. 中文开放式实体关系抽取研究与实现[D]. 成都:电子科技大学, 2016. LI Yang. Research and implementation of Chinese open entity relation extraction[D]. Chengdu:University of Electronic Science and Technology of China, 2016.
[21] BANKO M, CAFARELLA M J, SODERLAND S, et al. Open information extraction from the web[C]//International Joint Conference on Artifical Intelligence, New York, USA, 2007:2670-2676.
[22] KAMBHATLA N. Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations[C]//Proceedings of the ACL 2004 on Interactive Poster and Demonstration Sessions. Barcelona, Spain, 2004:Article No.22.
[23] AKBIK A, L?SER A. KrakeN:N-ary facts in open information extraction[C]//Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-Scale Knowledge Extraction. Montreal, Canada, 2012:52-56.
[24] CHRISTENSEN J, MAUSAM, SODERLAND S, et al. An analysis of open information extraction based on semantic role labeling[C]//Proceedings of the Sixth International Conference on Knowledge Capture. Banff, Alberta, Canada, 2011:113-120.
[25] HOFFART J, SUCHANEK F M, BERBERICH K, et al. YAGO2:a spatially and temporally enhanced knowledge base from Wikipedia[J]. Artificial intelligence, 2013, 194:28-61.
[26] LING Xiao, WELD D S. Temporal information extraction[C]//Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. Atlanta, Georgia, USA, 2010:1385-1390.
[27] WEIKUM G, NTARMOS N, SPANIOL M, et al. Longitudinal analytics on web archive data:it’s about time![C]//Proceedings of the Fifth Biennial Conference on Innovative Data Systems Research. Asilomar, USA, 2011:199-202.
[28] YADAV R, TANDAN S R. N-ary relation approach for open domain question answering system based on information extraction through world wide web[J]. International journal of engineering and applied sciences (IJEAS), 2015, 2(5):141-144.
[29] BERRAHOU S L, BUCHE P, DIBIE J, et al. Xart:discovery of correlated arguments of n-ary relations in text[J]. Expert systems with applications, 2017, 73:115-124.
[30] 秦兵, 刘安安, 刘挺. 无指导的中文开放式实体关系抽取[J]. 计算机研究与发展, 2015, 52(5):1029-1035 QIN Bing, LIU Anan, LIU Ting. Unsupervised chinese open entity relation extraction[J]. Journal of computer research and development, 2015, 52(5):1029-1035
[31] 赵军, 刘康, 周光有, 等. 开放式文本信息抽取[J]. 中文信息学报, 2011, 25(6):98-110 ZHAO Jun, LIU Kang, ZHOU Guangyou, et al. Open information extraction[J]. Journal of Chinese information processing, 2011, 25(6):98-110
[32] 王岁花, 赵爱玲, 马巍巍. 从Web中提取中文本体非分类关系的方法[J]. 计算机工程与设计, 2010, 31(2):451-454 WANG Suihua, ZHAO Ailing, MA Weiwei. Approach to extracting non-taxonomic relationships for Chinese ontology from web[J]. Computer Engineering and Design, 2010, 31(2):451-454
[33] 李明耀, 杨静. 基于依存分析的开放式中文实体关系抽取方法[J]. 计算机工程, 2016, 42(6):201-207 LI Mingyao, YANG Jing. Open Chinese entity relation extraction method based on dependency parsing[J]. Computer engineering, 2016, 42(6):201-207
[34] 古凌岚, 孙素云. 基于语义依存的中文本体非分类关系抽取方法[J]. 计算机工程与设计, 2012, 33(4):1676-1681 GU Linglan, SUN Suyun. Approach to Chinese ontology non-taxonomic relation extraction based on semantic dependency[J]. Computer engineering and design, 2012, 33(4):1676-1681
[35] QIU Likun, ZHANG Yue. ZORE:a syntax-based system for Chinese open relation extraction[C]//Processing of Conference on Empirical Methods in Natural Language. Doha, Qatar, 2014:1870-1880.
[36] Che W, Li Z, Liu T. LTP:A Chinese Language Technology Platform[C]//Proceedings of the Coling 2010, Demonstrations. 2010, Beijing, China, 2010:13-16.
[37] Zhang H, Yu H, Xiong D, et al. HHMM-based Chinese lexical analyzer ICTCLAS[J]. SIGHAN’ 03 Proceedings of the second SIGHAN workshop on Chinese language processing, 2003, 17:184-187.

备注/Memo

备注/Memo:
收稿日期:2018-05-07。
基金项目:国家自然科学基金项目(61562093);云南省应用基础研究计划重点项目(2016FA024).
作者简介:姚贤明,男,1984年生,讲师,主要研究方向为本体、知识图谱和问答系统。参与国家和省级科研项目10余项。发表学术论文6篇;甘健侯,男,1976年生,教授,博士生导师,主要研究方向为智能信息处理、计算机教育。主持国家自然科学基金项目3项,国家软科学项目3项,中央财政专项项目1项,教育部项目2项。发表学术论文50余篇,被SCI、EI、CSSCI检索20余篇,出版专著3部;徐坚,男,1977年生,副教授,主要研究方向为知识图谱、自然语言处理、教育信息化。发表学术论文40余篇,出版教材4部。
通讯作者:徐坚.E-mail:qjncxj@126.com
更新日期/Last Update: 1900-01-01