[1]王星,赵海良,王志刚.基于邻域系统的智能车辆最优轨迹规划方法[J].智能系统学报,2019,14(05):1040-1047.[doi:10.11992/tis.201805004]
 WANG Xing,ZHAO Hailiang,WANG Zhigang.Optimal trajectory planning method of intelligent vehicles based on neighborhood system[J].CAAI Transactions on Intelligent Systems,2019,14(05):1040-1047.[doi:10.11992/tis.201805004]
点击复制

基于邻域系统的智能车辆最优轨迹规划方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年05期
页码:
1040-1047
栏目:
出版日期:
2019-09-05

文章信息/Info

Title:
Optimal trajectory planning method of intelligent vehicles based on neighborhood system
作者:
王星 赵海良 王志刚
西南交通大学 数学学院 信息与计算科学系, 四川 成都 610031
Author(s):
WANG Xing ZHAO Hailiang WANG Zhigang
Department of Information and Computation Science, School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China
关键词:
智能车辆自动驾驶轨迹规划车辆避障邻域系统最优轨迹满意曲线综合评判
Keywords:
intelligent vehicleautomatic drivingtrajectory planningobstacle avoidanceneighborhood systemoptimal trajectorysatisfaction curvecomprehensive evaluation
分类号:
O231.2
DOI:
10.11992/tis.201805004
摘要:
针对智能车在行驶中的轨迹规划与控制问题。以邻域系统理论为基础,将智能车在复杂道路的动态控制转化为邻域内的简单静态控制;对邻域内的最优轨迹曲线进行选取,采用曲率的积分定义了曲线的弯阻指数,并以此为基础给出了邻域内的最优轨迹曲线评判模型和求解算法;以插值方法所建立的满意轨迹曲线为例进行仿真。结果表明,该方法在选取智能车的行驶轨迹的平稳光滑性上有一定的优越性。
Abstract:
This study mainly investigates the trajectory planning and control problems in the driving process of smart vehicles. First, based on the theory of neighborhood system, the dynamic control of intelligent vehicles on complex roads is transformed into a simple static control in the neighborhood, and then the optimal trajectory is selected in the neighborhood. The bending resistance index of the curve is defined by the integral of the curvature, and based on this, the optimal trajectory curve evaluation model and algorithm in the neighborhood is given. Finally, a satisfactory trajectory curve established by the interpolation method is taken as an example for simulation. The results show that this method has some advantages in selecting the steadiness and smoothness of the driving trajectory of an intelligent vehicle.

参考文献/References:

[1] ZHANG Kailong, YANG Ansheng, SU Hang, et al. Unified modeling and design of reservation-based cooperation mechanisms for intelligent vehicles[C]//Proceedings of the IEEE 19th International Conference on Intelligent Transportation Systems. Rio de Janeiro, Brazil, 2016:1192-1199.
[2] ZHANG Kailong, ZHANG Dafang, DE LA FORTELLE A, et al. State-driven priority scheduling mechanisms for driverless vehicles approaching intersections[J]. IEEE transactions on intelligent transportation systems, 2015, 16(5):2487-2500.
[3] ZHANG Ronghui, YOU Feng, CHEN Fang, et al. Vehicle detection method for intelligent vehicle at night time based on video and laser information[J]. International journal of pattern recognition and artificial intelligence, 2018, 32(4):1850009.
[4] JONES S, HUSS A, KURAL E, et al. Optimal electric vehicle energy efficiency & recovery in an intelligent transportation system[C]//Proceedings of the 19th ITS World Congress. Vienna, Austria, 2012:132-133.
[5] 叶炜垚. 基于虚拟障碍物的智能车导航方法研究[D]. 上海:上海交通大学, 2011. YE Weiyao. Virtual obstacles based intellgent vehicle navigatton method research[D]. Shanghai:Shanghai Jiaotong University, 2011.
[6] YAO Peng, WANG Honglun, SU Zikang. Cooperative path planning with applications to target tracking and obstacle avoidance for multi-UAVs[J]. Aerospace science and technology, 2016, 54:10-22.
[7] 游峰. 智能车辆自动换道与自动超车控制方法的研究[D]. 长春:吉林大学, 2005. YOU Feng. Study on autonomous lane changing and autonomous overtaking control method of intelligent vehicle[D]. Changchun:Jilin University, 2005.
[8] ZHAO Hailiang. A dynamic optimization decision and control model based on neighborhood systems[C]//Proceedings of the 20136th International Congress on Image and Signal Processing. Hangzhou, China, 2013:1319-1324.
[9] 付慧敏. 基于邻域系统和软优化的智能车自动倒车控制算法[D]. 成都:西南交通大学, 2016. FU Huimin. Reverse parking control method based on neighborhood system and soft optimization[D]. Chengdu:Southwest Jiaotong University, 2016.
[10] 刘恒. 模糊多目标优化控制在汽车控制中的应用[D]. 成都:西南交通大学, 2006. LIU Heng. The study of Multi-object optimal control on application in vehicle control[D]. Chengdu:Southwest Jiaotong University, 2006.
[11] 徐永. 多目标优化模糊控制及在车辆自动驾驶中的应用[D]. 成都:西南交通大学, 2008. XU Yong. Optimization of Multi-objective fuzzy control and application in vehicle control[D]. Chengdu:Southwest Jiaotong University, 2008.
[12] 江怡. 基于粗糙集和邻域系统的智能车避障控制方法[D]. 成都:西南交通大学, 2017. JIANG Yi. A control method to avoid obstacles for an intelligent car based on rough sets and neighborhood system[D]. Chengdu:Southwest Jiaotong University, 2017.

相似文献/References:

[1]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(03):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13(05):366.[doi:10.11992/tis.201706040]

备注/Memo

备注/Memo:
收稿日期:2018-05-05。
基金项目:国家自然科学基金资助项目(61473239,61402382).
作者简介:王星,男,1995年生,硕士研究生,主要研究方向为人工智能与多目标优化;赵海良,男,1962年生,教授,博士。主要研究方向为机器人控制、模糊信息处理理论以及多目标智能控制系统。主持或参与国家自然科学基金和国家经贸委重大技术开发项目、省部级科研项目和横向课题多项,获实用新型专利3项。发表学术论文50余篇;王志刚,男,1993年生,硕士研究生,主要研究方向为智能信息处理与模糊控制。
通讯作者:王星.E-mail:775423112@qq.com
更新日期/Last Update: 1900-01-01