[1]陈兴凯,卢昱,王凯,等.基于0/-1特征值的网络可控性优化研究[J].智能系统学报,2019,14(03):589-596.[doi:10.11992/tis.201801007]
 CHEN Xingkai,LU Yu,WANG Kai,et al.Optimizing network controllability based on eigenvalue 0/-1[J].CAAI Transactions on Intelligent Systems,2019,14(03):589-596.[doi:10.11992/tis.201801007]
点击复制

基于0/-1特征值的网络可控性优化研究(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年03期
页码:
589-596
栏目:
出版日期:
2019-05-05

文章信息/Info

Title:
Optimizing network controllability based on eigenvalue 0/-1
作者:
陈兴凯1 卢昱1 王凯2 杨文兵3
1. 陆军工程大学 装备指挥与管理系, 河北 石家庄 050003;
2. 陆军工程大学 装备模拟训练中心, 河北 石家庄 050003;
3. 9804厂军代室, 云南 曲靖 655000
Author(s):
CHEN Xingkai1 LU Yu1 WANG Kai2 YANG Wenbing3
1. Equipment Command and Management Department, Army Engineering University, Shijiazhuang 050003, China;
2. Equipment Simulation Training Center, Army Engineering University, Shijiazhuang 050003, China;
3. 9804 Military Representative Office, Qujing
关键词:
网络可控性最小控制输入特征值特征结构结构优化
Keywords:
network controllabilityminimum control inputeigenvaluefeature structurestructure optimization
分类号:
TP273
DOI:
10.11992/tis.201801007
摘要:
针对网络可控性的优化问题,本文以PBH判据为基础,介绍了最小控制输入的求解方法以及网络可控性的定量分析指标;对λk I-A矩阵的行相关情况进行分类,明确了0/-1特征值与行重复相关、λk I-A矩阵行相关性的关系;阐述了0和-1特征值对应的独立共连和互连共连两种具有规律性的特征结构,以消除这两种结构为基本思路,给出了结构优化的基本步骤。通过实验分析,验证了0/-1特征值能够极大地影响网络的可控性,结构优化能够提高网络的可控性。研究结果表明:0/-1特征值具有重要性和可控性优化的有效性,可以为可控性的相关研究提供新方法、新思路。
Abstract:
Optimizing network controllability continues to be a research hotspot in network science. Based on the PBH criterion, in this paper, we introduce the computation method of minimum control input and the quantitative analysis index of network controllability. We classify the row correlations of the matrix λkI-A and confirm the relationship between eigenvalue 0/-1 and the row repetition correlation as well as the row correlation of matrix λkI-A. We describe two kinds of 0/-1 regularity structures, isolated and connected link structures. Using the method for eliminating these two kinds of regularity structures, we then propose the basic step of structure optimization. Through experimental analysis, we verify that the eigenvalue 0/-1 could greatly influence network controllability, and that structural optimization could improve network controllability. These results not only demonstrate the importance of eigenvalue 0/-1 and the effectiveness of optimizing controllability, but also provide a new method and concept for network controllability research.

参考文献/References:

[1] LIU Yangyu, SLOTINE J J, BARABáSI A L. Controllability of complex networks[J]. Nature, 2011, 473(7346):167-173.
[2] YUAN Zhengzhong, ZHAO Chen, DI Zengru, et al. Exact controllability of complex networks[J]. Nature communications, 2013, 4:2447.
[3] 侯绿林, 老松杨, 肖延东, 等. 复杂网络可控性研究现状综述[J]. 物理学报, 2015, 64(18):188901 HOU Lülin, LAO Songyang, XIAO Yandong, et al. Recent progress in controllability of complex network[J]. Acta physica sinica, 2015, 64(18):188901
[4] LIN C T. Structural controllability[J]. IEEE transactions on automatic control, 1974, 19(3):201-208.
[5] PóSFAI M, LIU Yangyu, SLOTINE J J, et al. Effect of correlations on network controllability[J]. Scientific reports, 2013, 3:1067.
[6] 徐明, 徐传云, 曹克非. 度相关性对无向网络可控性的影响[J]. 物理学报, 2017, 66(2):028901 XU Ming, XU Chuanyun, CAO Kefei. Effect of degree correlations on controllability of undirected networks[J]. Acta physica sinica, 2017, 66(2):028901
[7] WANG Wenxu, NI Xuan, LAI Yingcheng, et al. Optimizing controllability of complex networks by minimum structural perturbations[J]. Physical review E, 2012, 85(2):026115.
[8] XIAO Yandong, LAO Songyang, HOU Lülin, et al. Edge orientation for optimizing controllability of complex networks[J]. Physical review. E, statistical, nonlinear, and soft matter physics, 2014, 90(4):042804.
[9] XU Jiuqiang, WANG Jinfa, ZHAO Hai, et al. Improving controllability of complex networks by rewiring links regularly[C]//Proceedings of the 26th Chinese Control and Decision Conference. Changsha, China, 2014:642-645.
[10] HOU Lülin, LAO Songyang, SMALL M, et al. Enhancing complex network controllability by minimum link direction reversal[J]. Physics letters A, 2015, 379(20/21):1321-1325.
[11] LI Jingwen, YUAN Zhengzhong, FAN Ying, et al. Controllability of fractal networks:an analytical approach[J]. Europhysics letters, 2014, 105(5):58001.
[12] XU Ming, XU Chuanyun, WANG Huan, et al. Analytical controllability of deterministic scale-free networks and Cayley trees[J]. European physical journal B, 2015, 88(7):168.
[13] WU Lanping, ZHOU Jikun, YUAN Zhengzhong, et al. Exact controllability of a star-type network[C]//Proceedings of the 27th Chinese Control and Decision Conference. Qingdao, China, 2015:5187-5191.
[14] 晁永翠, 纪志坚, 王耀威, 等. 复杂网络在路形拓扑结构下可控的充要条件[J]. 智能系统学报, 2015, 10(4):577-582 CHAO Yongcui, JI Zhijian, WANG Yaowei, et al. Necessary and sufficient conditions for the controllability of complex networks with path topology[J]. CAAI transactions on intelligent systems, 2015, 10(4):577-582
[15] 胡寿松. 自动控制原理[M]. 6版. 北京:科学出版社, 2013:445-456.

备注/Memo

备注/Memo:
收稿日期:2018-01-04。
基金项目:国家自然科学基金项目(61271152);国家社会科学基金军事学资助项目(15GJ003-184).
作者简介:陈兴凯,男,1988年生,博士研究生,主要研究方向为信息安全保障。发表学术论文10余篇;卢昱,男,1960年生,教授,博士生导师,主要研究方向为信息网络安全控制。参与科研项目40余项。发表学术论文100余篇;王凯,男,1993年生,硕士研究生,主要研究方向为网络安全与人工智能。发表学术论文5篇。
通讯作者:陈兴凯.E-mail:chen_xingkai@126.com
更新日期/Last Update: 1900-01-01