[1]吕红丽,宋玉晶,段培永.非线性布尔网络系统模糊建模与动态性能分析[J].智能系统学报,2018,13(05):707-715.[doi:10.11992/tis.201704023]
 LYU Hongli,SONG Yujing,DUAN Peiyong.Fuzzy modeling and dynamic analysis of nonlinear Boolean networks systems[J].CAAI Transactions on Intelligent Systems,2018,13(05):707-715.[doi:10.11992/tis.201704023]
点击复制

非线性布尔网络系统模糊建模与动态性能分析(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年05期
页码:
707-715
栏目:
出版日期:
2018-09-05

文章信息/Info

Title:
Fuzzy modeling and dynamic analysis of nonlinear Boolean networks systems
作者:
吕红丽1 宋玉晶1 段培永2
1. 山东建筑大学 信息与电气工程学院, 山东 济南 250101;
2. 山东师范大学 信息科学与工程学院, 山东 济南 250014
Author(s):
LYU Hongli1 SONG Yujing1 DUAN Peiyong2
1. School of Information and Electrical Engineering, Shandong Jianzhu University, Ji’nan 250101, China;
2. School of Information Science and Engineering, Shandong Normal University, Ji’nan 250014, China
关键词:
模糊动态模型布尔网络半张量积局部模型全局模型能控性能观性稳定性
Keywords:
fuzzy dynamical modelBoolean networksemi-tensor productlocal modelglobal modelcontrollabilityobservabilitystability
分类号:
TP273
DOI:
10.11992/tis.201704023
摘要:
针对非线性系统难以精确建模与动态性能分析的基本控制问题,基于模糊动态模型把布尔网络系统理论推广到非线性布尔网络系统,建立了模糊动态布尔网络控制系统的模型。引入模糊动态模型,对非线性布尔网络进行模糊建模,分别建立了非线性布尔网络系统的局部模型和全局模型。从系统的局部意义和全局意义上,对系统进行了能控性、能观性、稳定性等动态性能分析。最后,以多输入多输出的非线性布尔网络系统实例为具体研究对象,建立了系统的局部模型和全局模型,并对动态性能进行了仿真分析,得到了实验结果。实验结果表明,模糊动态布尔网络控制系统对非线性布尔网络系统的建模是有效的,动态性能分析是合理的,对模糊动态布尔网络控制系统的进一步分析有重要意义。
Abstract:
Considering the difficulty in accurately modeling nonlinear systems and analyzing their dynamic properties, the Boolean network system theories are extended to the nonlinear Boolean network system based on a fuzzy dynamic model, establishing a model of fuzzy dynamic Boolean network control systems. The fuzzy dynamic model is introduced to build a fuzzy model of nonlinear Boolean network, establishing the local and global models of the nonlinear Boolean network systems. The dynamic properties, which include controllability, observability, and stability of the system, are analyzed from the local and global meanings of the system. Finally, a multi-input multi-output nonlinear Boolean network system is taken as a numerical example, and the local and global models of the system are established. The dynamic properties are simulated and analyzed, and the experimental results are obtained. The results show that the fuzzy dynamic Boolean network control system is effective in modeling nonlinear Boolean network systems and reasonably analyzes the dynamic properties, which is of great significance for further analysis of the fuzzy dynamic Boolean network control systems.

参考文献/References:

[1] ZADEH L A. Fuzzy sets[J]. Information and control, 1965, 8(3):338-353.
[2] MAMDANI E H. Application of fuzzy algorithms for control of simple dynamic plant[J]. Proceedings of the institution of electrical engineers, 1974, 121(12):1585-1588.
[3] TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE transactions on systems man and cybernetics, 1985, 15(1):116-132.
[4] ABONYI J, NAGY L, SZEIFERT F. Fuzzy model-based predictive control by instantaneous linearization[J]. Fuzzy sets and systems, 2001, 120(1):109-122.
[5] FENG G. A survey on analysis and design of model-based fuzzy control systems[J]. IEEE transactions on fuzzy systems, 2006, 14(5):676-697.
[6] CAO S G, REES N W, FENG G. Analysis and design for a class of complex control systems part I:fuzzy modelling and identification[J]. Automatica, 1997, 33(6):1017-1028.
[7] CAO S G, REES N W, FENG G. Analysis and design for a class of complex control systems part Ⅱ:fuzzy controller design[J]. Automatica, 1997, 33(6):1029-1039.
[8] SILVA L F P, LEITE V J S, CASTELAN E B, et al. Stabilization of time-delay nonlinear discrete-time systems with saturating actuators through T-S models[J]. IFAC proceedings volumes, 2014, 47(3):11000-11005.
[9] ZHANG Changzhu, FENG Gang, Qiu Jianbin, et al. T-S fuzzy-model-based piecewise H output feedback controller design for networked nonlinear systems with medium access constraint[J]. Fuzzy sets and systems, 2014, 248:86-105.
[10] CAO Shuguang, REES N W, FENG Gang. Analysis and design of fuzzy control systems using dynamic fuzzy-state space models[J]. IEEE transactions on fuzzy systems, 1999, 7(2):192-200.
[11] KAUFFMAN S A. Metabolic stability and epigenesis in randomly constructed genetic nets[J]. Journal of theoretical biology, 1969, 22(3):437-467.
[12] Cheng D Z, Qi H S, Semi-tensor Product of Matrices Theory and Application[M]. Beijing:Science Press, 2007.
[13] 程代展, 齐洪胜, 赵寅. 布尔网络的分析与控制——矩阵半张量积方法[J]. 自动化学报, 2011, 37(5):529-540 CHENG Daizhan, QI Hongsheng, ZHAO Yan. Analysis and control of boolean networks:a semi-tensor product approach[J]. Acta automatica sinica, 2011, 37(5):529-540
[14] CHENG Daizhan, QI Hongsheng, LI Zhiqiang, et al. Stability and stabilization of Boolean networks[J]. International journal of robust and nonlinear control, 2011, 21(2):134-156.
[15] CHENG Daizhan, LI Zhiqiang, QI Hongsheng. Realization of boolean control networks[J]. Automatica, 2010, 46(1):62-69.
[16] CHENG Daizhan, QI Hongsheng. Controllability and observability of boolean control networks[J]. Automatica, 2009, 45(7):1659-1667.
[17] CHENG Daizhan. Disturbance decoupling of boolean control networks[J]. IEEE transactions on automatic control, 2011, 56(1):2-10.
[18] CHENG Daizhan, QI Hongsheng. A linear representation of dynamics of boolean networks[J]. IEEE transactions on automatic control, 2010, 55(10):2251-2258.
[19] CHENG Daizhan, QI Hongsheng, LI Zhiqiang. Model construction of boolean network via observed data[J]. IEEE transactions on neural networks, 2011, 22(4):525-536.
[20] CHENG Danzhan, QI Hongsheng. State-space analysis of boolean networks[J]. IEEE transactions on neural networks, 2010, 21(4):584-594.
[21] CHENG Daizhan, QI Hongsheng, LI Zhiqiang. Feedback decomposition of boolean control networks[M]//Analysis and Control of Boolean Networks. London:Springer, 2011:297-311.
[22] 宋金利, 肖会敏, 李志强. 布尔控制网络的部分变量能控性[J]. 中国科学:信息科学, 2016, 46(3):338-349 SONG Jinli, XIAO Huimin, LI Zhiqiang. Partial variables controllability of Boolean control networks[J]. Scientia sinica informationis, 2016, 46(3):338-349
[23] 李志强, 宋金利. 布尔控制网络的能控性与能观性[J]. 控制理论与应用, 2013, 30(6):760-764 LI Zhiqiang, SONG Jinli. Controllability and observability of boolean control networks[J]. Control theory and applications, 2013, 30(6):760-764

备注/Memo

备注/Memo:
收稿日期:2017-04-19。
基金项目:国家自然科学基金项目(61374187,61403237).
作者简介:吕红丽,女,1978年生,副教授,主要研究方向为复杂系统建模控制与仿真、智能环境与网络化控制。发表学术论文20余篇;宋玉晶,女,1990年生,硕士研究生,主要研究方向为智能环境与网络化控制;段培永,男,1968年生,教授,博士生导师,主要研究方向为模糊控制、神经控制、数据挖掘、建筑智能环境与网络化控制研究。主持科研项目10余项,发表学术论文70余篇,被SCI、EI收录30余篇。
通讯作者:宋玉晶.E-mail:xiaosongyj@qq.com.
更新日期/Last Update: 2018-10-25