[1]徐莹莹,邹丽,黄志鑫,等.基于TOPSIS的语言真值直觉模糊多属性决策[J].智能系统学报,2017,(04):504-510.[doi:10.11992/tis.201608008]
 XU Yingying,ZOU Li,HUANG Zhixin,et al.Linguistic truth-valued intuitionistic fuzzy multi-attribute decision making based on TOPSIS[J].CAAI Transactions on Intelligent Systems,2017,(04):504-510.[doi:10.11992/tis.201608008]
点击复制

基于TOPSIS的语言真值直觉模糊多属性决策(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
期数:
2017年04期
页码:
504-510
栏目:
出版日期:
2017-08-25

文章信息/Info

Title:
Linguistic truth-valued intuitionistic fuzzy multi-attribute decision making based on TOPSIS
作者:
徐莹莹1 邹丽1 黄志鑫2 潘畅1
1. 辽宁师范大学 计算机与信息技术学院, 辽宁 大连 116081;
2. 辽宁师范大学 数学学院, 辽宁 大连 116081
Author(s):
XU Yingying1 ZOU Li1 HUANG Zhixin2 PAN Chang1
1. School of Computer and Information Technology, Liaoning Normal University, Dalian 116081, China;
2. School of Mathematics, Liaoning Normal University, Dalian 116081, China
关键词:
TOPSIS语言真值直觉模糊对归一化距离理想点多属性决策
Keywords:
TOPSISlinguistic truth-valued intuitionistic fuzzy pairsnormalized distanceideal pointmulti-attribute decision making
分类号:
TP181
DOI:
10.11992/tis.201608008
摘要:
针对具有模糊语言值信息的多属性决策问题,结合传统的TOPSIS方法,提出了基于TOPSIS的语言真值直觉模糊多属性决策方法。在语言真值直觉模糊代数的基础上,用语言真值直觉模糊对来表达既有可比的又有不可比的模糊语言值信息,给出了语言真值直觉模糊对之间的归一化距离算法,并讨论了其相关性质。提出了语言真值直觉模糊正、负理想点,通过计算各方案属性值与正、负理想点之间的距离,得到各方案与理想点之间的相对贴近度,并根据相对贴近度的排序结果得到最优方案。实例说明该决策方法的合理性和有效性。
Abstract:
For multi-attribute decision making problems with fuzzy linguistic-valued information, in this paper, we propose a linguistic truth-valued intuitionistic fuzzy multi-attribute decision making approach based on the technique for order performance by similarity to ideal solution (TOPSIS), in combination with the traditional TOPSIS approach. On the basis of linguistic truth-valued intuitionistic fuzzy algebra, in our approach, we used linguistic truth-valued intuitionistic fuzzy pairs to express fuzzy linguistic-valued information that is both comparable and incomparable. We define the normalized distance algorithm for linguistic truth-valued intuitionistic fuzzy pairs and discuss its related properties. We propose linguistic truth-valued intuitionistic fuzzy positive and negative ideal points by calculating the distances between the attribute values of every scheme with positive and negative ideal points to obtain their relative degree of closeness. From the ranking result of the relative degree of closeness, we can determine the best scheme. We give an example to illustrate the reasonability and effectiveness of our proposed decision-making approach.

参考文献/References:

[1] ZADEH L A. Fuzzy sets[J]. Information and control, 1965, 8(3):338-353.
[2] 王跃,杨燕,王红军,等. 一种基于少量标签的改进迁移模糊聚类[J]. 智能系统学报, 2016, 11(3):1-8.WANG Yue, YANG Yan, WANG Hongjun, et al. An improved transfer fuzzy clustering with few labels[J]. CAAI transactions on intelligent systems, 2016, 11(3):310-317.
[3] 李滔,王士同. 适合大规模数据集的增量式模糊聚类算法[J]. 智能系统学报, 2016, 11(2):188-199.LI Tao, WANG Shitong. Incremental fuzzy (c+p)-means clustering for large data[J]. CAAI transactions on intelligent systems, 2016, 11(2):188-199.
[4] ATANASSOV K. Intuionistic fuzzy sets[J]. Fuzzy sets and systems, 1986, 20(1):87-96.
[5] ATANASSOV K. More on intuionistic fuzzy sets[J]. Fuzzy sets and systems, 1989, 33(1):37-45.
[6] SZMIDT E, KACPRZYK J. Entropy for intuitionistic fuzzy sets[J]. Fuzzy sets and systems, 2011(118):467-477.
[7] WANG Y, WEN X, ZOU L. 10-Elements linguistic truth-valued intuitionistic fuzzy first-order logic system[M]. Springer Berlin Heidelberg, 2015:407-417.
[8] 牛强. 基于区间直觉集的互联网金融模式择优方法[J]. 统计与决策, 2016(1):66-68.NIU Qiang. Internet financial model optimizing method based on interval intuitionistic sets[J]. Statistics and decision, 2016(1):66-68.
[9] XU Y, LI X, LIU J, et al. Determination of α-resolution for lattice-valued first-order logic based on lattice implication algebra[C]//2007 International conference on Intelligent Systems and Knowledge Engineering. 2007:1567-1574.
[10] XU Yang, MA Jun. Linguistic truth-valued lattice implication algebra and its properties[C]//The Proceedings of the IMACS Multi-conference on Computational Engineering in Systems Applications. Beijing, 2006:1413-1418.
[11] 邹丽. 基于语言真值格蕴涵代数的格值命题逻辑及其归结自动推理研究[D].成都:西南交通大学, 2010:1-160.ZOU Li. Studies on lattice-valued propositional logic and its resolution-based automatic reasoning based on linguistic truth-valued lattice implication algebra[D]. Cheng Du:Southwest Jiaotong University, 2010:1-160.
[12] HWANG C L, YOON K. Multiple attribute decision making:methods and applications[M]. NewYork:Springer-Verlag, 1981.
[13] JOSHI D, KUMAR S. Intuitionistic fuzzy entropy and distance measure based TOPSIS method for multi-criteria decision making[J]. Egyptian informatics journal, 2014, 15(2):97-104.
[14] CHEN S M, CHENG S H, LAN T C. Multicriteria decision making based on the TOPSIS method and similarity measures between intuitionistic fuzzy values[J]. Information sciences, 2016, 367:279-295.
[15] BISWAS P, PRAMANIK S, GIRI B C. TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment[J]. Neural computing and applications, 2016, 27(3):727-737.
[16] CHEN C T. Extensions of the TOPSIS for group decision-making under fuzzy environment[J]. Fuzzy sets and systems, 2000, 114(1):1-9.
[17] MAHDAVI I, HEIDARZADE A, SADEGHPOUR-GILDEH B, et al. A general fuzzy TOPSIS model in multiple criteria decision making[J]. The international journal of advanced manufacturing technology, 2009, 45(3/4):406-420.

备注/Memo

备注/Memo:
收稿日期:2016-08-26。
基金项目:国家自然科学基金项目(61372187,61173100);辽宁省自然科学基金项目(2015020059).
作者简介:徐莹莹,女,1991年生,硕士研究生,主要研究方向为多值逻辑与不确定性推理、智能信息处理;邹丽,女,1971年生,副教授,博士,主要研究方向为多值逻辑与不确定性推理、智能信息处理,发表学术论文70余篇;黄志鑫,男,1990年生,硕士研究生,主要研究方向为多值逻辑与不确定性推理、智能信息处理。
通讯作者:徐莹莹,E-mail:xuyingyingcn@126.com.
更新日期/Last Update: 2017-08-25